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Abstract

This thesis reports on local manipulation of the spin state of a quasi–one–dimensional
spinor Bose–Einstein condensate (BEC) of 87Rb atoms. Utilizing the existing laser
setup for local control in a novel way enables us to perform local spinor phase rota-
tions on the BEC. Subsequent laser pulses allow for the imprinting of spatial struc-
tures, with a resolution of (5.7± 0.7)µm. We investigate the temporal evolution of
spatially flat initial conditions under different settings for the second–order Zeeman
shift. The system evolves locally as predicted by the single–mode approximation
(SMA), supporting the use of the local density approximation (LDA). Comparing
the oscillations in the relative populations of the side–modes to a simulation of the
SMA, we extract effective values for the spin-spin interaction (1.5± 0.1)Hz and the
second–order Zeeman shift. The latter depends linearly on the experimentally pro-
grammed value, with a slope of 1.07± 0.07. Further analysis of spin dynamics with
local spinor phase rotations highlights deviations from the LDA and investigates the
conditions for the deterministic preparation of a vortex in the transversal spin in
space and time. We show first experiments towards the deterministic preparation
of such structures.

Zusammenfassung

Diese Arbeit beschreibt die lokale Manipulation des Spinzustands eines quasi eindi-
mensionalen Spinor-Bose-Einstein-Kondensats (BEC) aus 87Rb Atomen. Durch die
neuartige Nutzung des vorhandenen Laseraufbaus zur lokalen Kontrolle können
wir lokale Spinorphasenrotationen an dem BEC durchführen. Aufeinanderfolgende
Laserpulse ermöglichen das Aufprägen von räumlichen Strukturen mit einer Auflösung
von (5, 7± 0, 7)µm. Wir untersuchen die zeitliche Entwicklung von räumlich flachen
Anfangsbedingungen unter verschiedenen Einstellungen für die Zeeman-Verschiebung
zweiter Ordnung. Das System entwickelt sich lokal, wie von der single–mode–
approximation (SMA) vorhergesagt, was die Verwendung der local density approx-
imation (LDA) unterstützt. Durch Vergleich der Oszillationen der relativen Pop-
ulationen in den Seitenmoden mit einer Simulation der SMA extrahieren wir ef-
fektive Werte für die Spin-Spin-Wechselwirkung (1, 5 ± 0, 1)Hz und die Zeeman-
Verschiebung zweiter Ordnung. Letztere hängt linear vom experimentell program-
mierten Wert ab, mit einer Steigung von 1.07±0.07. Eine weitere Analyse der Spin-
dynamik mit lokalen Spinor-Phasendrehungen zeigt Abweichungen von der LDA auf
und untersucht die Bedingungen für die deterministische Vorbereitung eines Wirbels
im Transversalen Spin in Raum und Zeit. Wir zeigen erste Experimente zur deter-
ministischen Präparation solcher Strukturen.
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1 INTRODUCTION

1 Introduction

In recent years, there has been significant interest in studying quantum many-body
systems far from equilibrium [1–3]. The behavior of these systems provides a valu-
able opportunity to gain deeper insights into mechanisms that are believed to be
universal and govern the time evolution of various physical configurations, such as
quark–gluon plasma or the early universe [4, 5]. The study of dynamics far from
equilibrium is particularly interesting due to the complexity arising from interac-
tion on different length scales. A common example of this is turbulence in classical
hydrodynamics, where kinetic energy is transported towards small length scales,
associated with the self–similar eddie–like structure, and eventually dissipated into
the system as heat at the Kolmogorov microscale [6].

Isolated ultra-cold quantum many-body systems, such as Bose-Einstein conden-
sates (BECs), offer an exceptional platform for exploring and simulating far-from-
equilibrium physics [7]. These systems are highly controllable and can be used to
study and simulate certain Hamiltonians, making them ideal candidates for inves-
tigating complex many-body phenomena that can be challenging to access through
classical computational simulations. Spinor BECs, which consist of multiple compo-
nents corresponding to different magnetic sub-levels, are especially interesting. The
interactions in their spin degree of freedom allow the observation of phenomena such
as phase transitions [8], spin–mixing dynamics [9], and spin domain formation [10]
along with its subsequent coarsening dynamics [11].

The experiments presented in this thesis are performed with a quasi one–dimensional
spinor BEC. One phenomenon that has been observed in this setup is universal dy-
namics near a non–thermal fixed point [12]. A numerical study [13] has investigated
the relation of this behavior to the presence of vortices in both space and time, in
the complex order parameter in the easy-plane phase, that is, the transversal spin
field F⊥. The vortices show up stochastically in the scaling regime, which means
they can not be observed in the experiment, as each measurement is a snapshot of
a different realization of the experiment.

We aimed to prepare such a vortex deterministically in the experiment. For this
we developed a method to prepare states with spatially varying transversal spin
length, which constitutes a new class of initial condition than previously studied
in the experiment. This method uses a steerable laser that locally illuminates the
atom cloud, causing a relative shift of the spinor phase with respect to the rest of
the condensate. The latter can be visually understood, as it “rotates” a state from
an elongated transversal spin into a quadrupole moment, that is, reducing the spin
length.

Besides the spatial control of the spinor phase, precise knowledge and control of
the parameters governing the spin dynamics is key for the deterministic generation
of such a vortex. For this, we investigate the time evolution of spatially flat spin pro-
files, which can be locally understood by means of the single–mode approximation.
We compare the measured trajectories in spin space with a simulation of the latter
to extract effective parameters for the second–order Zeemann shift and the spin–
spin interaction. Our findings demonstrate how the local imprint on the spin length
causes the system to deviate from the behavior expected under the single–mode
approximation.

Section 2 gives an overview of the theoretical background behind the presented
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1 INTRODUCTION

work. After introducing the single–particle spin–1 system, we move on to the Gross–
Pitaevski equation, describing the spinor BEC on a mean field level. After that, the
focus is on the systems internal spin dynamics. Section 2.3, shows results of a
simulation of the equations of motion for the spin degree of freedom in the single–
mode approximation. Finally, the phase diagram is shown, and a very brief overview
over previous studies investigating the dynamics after a quench from the polar to
the easy–plane phase is given.

Section 3 briefly presents the experimental setup. The level scheme of 87Rb
is shown, and the different control techniques for manipulating and extracting the
internal spin states are described.

Section 4 presents the method for the local control of the spinor phase. The
depth and shape of the prepared spin profiles are then investigated in the experiment.

In Section 5, the experimental control of the effective second–order Zeeman
shift is briefly explained. It relies on a calibration based on a simplified model. The
actual value qeff may still differ significantly with respect to the spin interaction
strength, so its independent measurement is highly desirable.

To do so, the time evolution of spatially flat spin profiles is observed with different
values for qeff. The measured oscillations are used to obtain the values for the latter,
as well as an effective value for the spin–spin interaction strength c̃1, by a comparison
to the spin equations of motion in the single–mode approximation, that is, assuming
no spatial spin structure.

Section 6 observes, how the dynamic behavior changes when the initial condi-
tion features a local rotation in the spinor phase. For a small rotation, the system
locally still resembles the trajectories expected from the single–mode approximation,
while for a larger imprint, the system behaves very differently, as kinetic energy be-
comes more relevant. Finally, we present the results of a measurement that so far
holds the most promise for observing a vortex in the transverse spin F⊥.
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2 THEORETICAL BACKGROUND

2 Theoretical background

In order to describe the many-body state of a spin-1 BEC, it is instructive to first
gain an understanding of the theoretical description of a spin-1 system on the single-
particle level. Even though what we finally aim to describe is a one-dimensional
many–body state, the relevant observables can be understood on a single–particle
level. As we aim to describe the dynamics of the spinor BEC on the mean-field level,
we then introduce the mean-field equation of motion, that is the Gross-Pitaevskii
equation. Finally we will discuss the spin dynamics in the single-mode approxima-
tion and the resulting ground–state phase diagram. This chapter is based on [14–
16].

2.1 The spin-1 system

The experiments in this thesis are performed in the F=1 hyperfine manifold of 87Rb,
with F being the total angular momentum quantum number of the single atoms,
respecting the internal coupling of the nuclear spin and the spin of the electron.
This section aims to introduce the graphical representation of a single particle spin–
1 state and the relevant observables.

A spin-1 state is described by a normalized, three component, complex valued
vector. It can be parametrized via

|ψ⟩ = r1e
iϕL/2|1⟩+ r0e

iϕS |0⟩+ r−1e
−iϕL/2| − 1⟩ =

 r1e
iϕL/2

r0e
iϕS

r−1e
−iϕL/2

 , (1)

with Larmor phase ϕL = φ1 −φ−1 and spinor phase ϕS = φ0 − (φ1 +φ−1)/2, where
φm are the phases of the three magnetic substates |mf⟩. The role of Larmor and
spinor phase is important in this work, and can intuitively be understood as will
be discussed in the following. As in a spin 1/2 system, the spin 1 state can be
visualized as a point on the spin sphere (see fig. 1, left) with the well-known role of
the Larmor phase as the polar angle. However, in contrast to the spin 1/2 system,
even a pure spin 1 state does not necessarily lie on the surface, but can correspond
to any point within the sphere. Furthermore, the coordinates in this visualization,
representing the expectation values for the three spin observables, are not sufficient
to fully describe a spin 1 state. This is due to the fact that, in contrast to the spin
1/2 system, there are more than the three operators that form an operator basis for
the hermitian observables of the spin-1 system. In addition to the spin 1 analog of
the three spin operators

Ŝx =
1√
2

0 1 0
1 0 1
0 1 0

 , Ŝy =
1√
2

0 −i 0
i 0 i
0 −i 0

 and Ŝz =

1 0 0
0 0 0
0 0 −1

 , (2)

which fulfill the su(2) commutation relation [Ŝi, Ŝj] = iϵijkŜk, and are thus gen-
erators of rotations on the sphere spanned by their expectation values, a conve-
nient choice to describe the spin-1 system are the quadrupole operators Q̂ij =

ŜiŜj + ŜjŜi − 4
3
δij13 [16]. The expectation value of the quadrupole operatos can

be intuitively thought of in different ways, one being that they are linked to the
second moment of the spin, i.e. fluctuations of a state. The polar state |ψp⟩ = |0⟩
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2 THEORETICAL BACKGROUND

tation of the polar and trans erse polar state on a spin

L

Figure 1: Graphical representation of spin 1 states. Left: Spin sphere, with the
expectation values Sx, Sy and Sz on the axes. The Larmor phase determines the
orientation of the spin state on the equator of the spin-sphere. Different states are
shown, polar (red) and transverse polar (green) state, are indistinguishable due to
identical (zero) expectation value for all three observables. Middle: To distinguish
polar and transverse polar state, an ellipsoid centered around their expectation
value is used to indicate their fluctuations. Right: The spin–nematic sphere allows
a visual differentiation between all states shown on the left. Polar and transverse
polar state differ in Q0. The blue dots lie on the equator and differ in their spinor
phase, rotating a state around Q0 and determining the position of a state on the
spin–nematic sphere. Figure taken and adapted from [16].

and the transverse polar state |ψtp⟩ = 1√
2
(|1⟩ + | − 1⟩) for example have the same

expectation value of the spin operators ⟨Ŝi⟩ = ⟨ψ|Ŝi|ψ⟩ = 0, but differ in their ex-
pectation value of the operator Q̂zz which is maximal for the transverse polar state
and zero for the polar state. This can be implemented in the graphical representa-
tion on the spin sphere using not only a point, but also an ellipsoid describing the
direction and amplitude of the fluctuations along a given axis on the spin sphere for
a potential measurement along that axis (see Fig. 1, middle).

Alternatively, one can introduce another sphere, the so-called spin–nematic sphere
(see Fig. 1, right). It is, as the spin sphere, an SU(2) subspace and is spanned by
the operators {Ŝ⊥(ΦL), Q̂⊥(ΦL), Q̂0}. These operators are defined via

Ŝ⊥(ϕL) = cos(ϕL)Ŝx + sin(ϕL)Ŝy (3)

Q̂⊥(ϕL) = cos(ϕL)Q̂yz − sin(ϕL)Q̂xz (4)

Q̂0 = −1

3
13 − Q̂zz =

−1 0 0
0 1 0
0 0 −1

 . (5)

In contrast to the three spin operators, the above mentioned operators do not gener-
ally fulfill the SU(2) commutation relations, so that rotations around Ŝ⊥ and Q̂⊥ do
not generally lie on the spin–nematic sphere. They only do under the assumption
that r1 = r−1, meaning equal probabilities for states | ± 1⟩, and for one specific
Larmor phase. The exact commutation relations can be found in [16]. However,
the operator Q̂0 is the generator of rotations on this sphere and analogously to the
operator Ŝz that generates a rotation on the spin sphere and is associated with a
propagation of the Larmor phase, the operator Q̂0 rotates a spin into a correspond-
ing quadrupole, which is done via a propagation of the spinor phase. As already
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2 THEORETICAL BACKGROUND

discussed in the example of the polar and transverse polar state, Q̂zz is associated
with what will be called the ”side mode population” and the shift in eq. (5) is just
to center the spectrum around zero. Adding the identity matrix does not change
the unitary evolution on the spin-nematic sphere induced by a rotation around the
corresponding axis.

2.2 Mean–field description and GPE

The Bose–Einstein condensate (BEC) in our experiment contains on the order of
105 spin–1 particles. The mathematical object that describes the three dimensional
spin–1 BEC is a three component quantum spin operator field

Ψ̂ΨΨ(xxx, t) =

 Ψ̂1(xxx, t)

Ψ̂0(xxx, t)

Ψ̂−1(xxx, t)

 . (6)

The individual components themselves are bosonic field operators corresponding to
the three mf sublevels of the system. All phenomena discussed in this thesis can be
analyzed on a mean–field level. Therefore, the full quantum operator is replaced by
its expectation value

ψψψ(xxx, t) = ⟨Ψ̂ΨΨ(xxx, t)⟩ =

 √
n1(xxx, t)e

iφ1(xxx,t)

√
n0(xxx, t)e

iφ0(xxx,t)

√
n−1(xxx, t)e

iφ−1(xxx,t)

 . (7)

The many particle state is thereby represented by a three component complex valued
function, describing the density nm and the phase φm of three magnetic sublevels,
respectively. The mean–field approximation can be a valid approximation, but it
neglects quantum fluctuations and entanglement. Therefore, it allows to classically
simulate the dynamics of a many particle system, and offers a mathematical less in-
volved description than the operator language of the second quantization formalism.
The mean field energy is described by

E[ψψψ] =

∫
dxxx

{
ψψψ∗(xxx, t)H0ψψψ(xxx, t) +

1

2
c0n

2(xxx, t) +
1

2
c1|FFF |2(xxx, t)

}
, (8)

with H0 = − ℏ
2M

∇2 + V (xxx)− qefff
2
z , (9)

where H0 is the non–interacting part of the Hamiltonian. The first term describes
the kinetic energy, consisting of reduced Planck constant ℏ, gradient ∇, and mass
M of the particles. V(x) is the trapping potential, and qeff denotes the second–
order Zeeman effect, i.e. an energetic offset of the mf = 0 component with respect
to the side modes mf = ±1. The first–order Zeeman effect ∼ pfz, with p being
the energy splitting between the three mf sublevels due to the magnetic field, is
not represented since it can be transformed away by describing the system in a
rotating frame with the Larmor frequency. The coupling constant c0 describes the
density-density interaction and c1 the spin-spin interaction, with |c0| ≈ 200|c1|. This
implies that the energy scales associated with the dynamics of the total density are
considerably larger than those associated with the spin. The interactions also give
rise to two main length scales that govern the dynamics of the system: the density
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2 THEORETICAL BACKGROUND

healing length ξd ∼ 0.3µm, and the spin healing length ξs ∼ 5µm [17]. The number
density n is defined as n(xxx, t) = ψψψ∗(xxx, t)ψψψ(xxx, t) and the spin density FFF is given as

Fν(xxx, t) =
1∑

m,m′=−1

ψ∗
m(xxx, t) · (fν)mm′ · ψm′(xxx, t), (10)

with the vector f containing the three spin 1 matrices in their three dimensional
representation fff = (fx, fy, fz) = (Ŝx, Ŝy, Ŝz) as introduced in the previous section.
The single components of FFF are

Fx =
1√
2

[
ψ∗
0(ψ1 + ψ−1) + c.c.

]
, (11)

Fy =
i√
2

[
ψ∗
0(ψ1 − ψ−1) + c.c.

]
, (12)

Fz = |ψ1|2 − |ψ−1|2. (13)

The complex valued transverse spin F⊥ = Fx + iFy is defined as

F⊥ =
√
2
(
ψ∗
1ψ0 + ψ∗

0ψ−1

)
= |F⊥|eiϕL , (14)

with the Larmor phase ϕL describing the spin orientation in the FxFy–plane. For
a state on the equator of the spin–nematic sphere (n1 = n−1 = 0.5n0 = 0.25n) the
transversal spin length |F⊥| is given as

|F⊥| = n| cosϕS|. (15)

Of special interest are the second–order Zeeman effect q and the spin interaction
c1, since they introduce two competing energy scales that will lead to different
magnetic phases of the system. Applying the variational principle to eq. 8, one
obtains the classical equation of motion, the Gross Pitaevski Equation or short GPE.
It is describing the time evolution of ψψψ, also referred to as the order parameter of
the BEC.

iℏ∂tψψψ(x, t) =
[
− ℏ
2M

∇2 + V (xxx) + qefff
2
z +

1

2
c0n(xxx, t) +

1

2
c1F (xxx, t)f

]
ψψψ(xxx, t) (16)

In the experimental setup, the density distribution can be to some degree de-
scribed in a Thomas–Fermi approximation [17]. The transversal extent of the density
profile is much smaller than ξs so that the system can be regarded as quasi–1d in the
spin degree of freedom. A quasi–1d GPE can be formulated using modified effective
1d interaction constants c1d0,1 and densities n1d [17–19]. The superscript “1d” will be
omitted in the following and the 1d description is applied implicitly.

2.3 Mean–field dynamics in the single–mode approximation

A first step towards understanding the dynamics of a 1d spinor BEC can be to
focus on the spin dynamics, and assuming that all spin components share the same
spatial dependence and only the spin components vary in time. This is called the
”Single-Mode Approximation” (SMA), and it is valid, as long as the system size is
much smaller than ξs. However, when the system size is larger than ξs, the SMA

10



2 THEORETICAL BACKGROUND

can be applied locally within the local density approximation (LDA) [15]. The
aforementioned assumptions can be formulated as follows:

ψm(x, t) =
√
Nξm(t)ψSMA(r)e

−iµt/ℏ, (17)

with a normalized, space–independent spinor ξξξ. The single–mode wavefunction
ψSMA gives the spatial extent of the cloud, and µ is the chemical potential. Plug-
ging this into the GPE (16) yields the equations of motion (EOM) for the single
components [14]

iℏξ̇±1 = qeffξ±1 + c̃1[ρ±1 + ρ0 − ρ∓1 + ξ20ξ
∗
∓1] (18)

iℏξ̇0 = c̃1[(ρ1 + ρ−1)ξ0 + 2ξ1ξ−1ξ
∗
0 ] (19)

with c̃1 = (N/V eff)c1 = neffc1 in the SMA with total atom number N and effective
volume V eff = (

∫
dr|ΨSMA|4)−1 of the system. neff is a resulting effective density,

and ρm ≡ |ξm|2.
A more intuitive way to visualize the spin dynamics is to look at the mean–field

energy functional (see eq. 8). It features only two terms that describe the internal
spin dynamics of the system. Expressing these in terms of the spin-1 operators as
introduced in section 2.1, allows to express the spin mixing Hamiltonian

Ĥspin = qeffŜ
2
z +

1

2
c̃1(Ŝ

2
x + Ŝ2

y + Ŝ2
z ). (20)

Note that c1 is also here replaced by c̃1.
Rewriting equation (20) allows a very illustrative picture of the spin interaction

dynamics on the spin nematic sphere. Expressing S2
z in terms of Q̂0 yields

Q̂0 =

−1 0 0
0 1 0
0 0 −1

 and Ŝ2
z =

1 0 0
0 0 0
0 0 1

 = −1

2
Q̂0 +

1

2
13, (21)

where the addition of 1
2
13 just induces a constant energy offset and can thus be

ignored. Further, if one assumes ⟨Ŝz⟩ = 0, and without loss of generality chooses ϕL

to be 0, equation (20) can be rewritten as

Ĥspin/h = −1

2
qeff Q̂0 +

1

2
c̃1Ŝ

2
x. (22)

This Hamiltonian can be intuitively understood if one looks at the spin–nematic
sphere. The first term causes a rotation around the Q̂0- axis, with a frequency
independent of the expectation value of Q̂0. The second term is inducing a sheering,
i.e. a rotation around the Ŝx axis, with an orientation depending on the sign of
⟨Ŝx⟩, and a frequency depending of the amplitude. Because spin mixing conserves
the magnetization in z–direction and the Larmor phase, the state has to stay on
the surface of the spin–nematic sphere. For large qeff, the first term dominates, and
the polar state is stationary. An elongated spin would rotate around the Q0-axis
due to the large second–order zeemann shift. In the other extremal case, where
qeff is approximately zero, the polar state is unstable, whereas an elongated spin
would be stable. In between those two cases there is a ”trapped region” with a
stable point, and an ”untrapped” or ”free–running” region, where the spinor phase

11



2 THEORETICAL BACKGROUND
4.4. MEAN-FIELD DYNAMICS ON THE SPIN-NEMATIC SPHERE

Figure 4.2.: Mean-�eld trajectories on the spin-nematic sphere: �e two di�erent
contribution to the total Hamiltonian lead to a rotation (le�) and a shearing
(middle) on the spin-nematic sphere. On the right the combined trajectories
for qe� = �Nc̃1 are shown. �e black line is usually referred to as separatrix
which separates the self-trapping region (red lines) from the running phase
mode (blue lines).

of the other two shearing terms can be neglected. Because spin-mixing conserves the
magnetization and the Larmor phase, it is ensured that the state stays on the surface of
the sphere during the dynamics.

�e mean-�eld energy on this spin-nematic subspace is given by

EMF = �h
qe�
2 Q0 + h

c̃1
2 S2

x . (4.18)

For qe� � c̃1 the �rst term dominates and we �nd stable points at the poles of the sphere,
corresponding to polar and transverse polar states. We now study the stability of the polar
state under a change of the parameter qe�. For that we calculate the slope and curvature
of the energy in the direction of Sx . Because the phase space is spherical the value of Q0

is not an independent parameter but is connected to Sx via Q0 =
q
N 2 � S2

x �Q2
�z for the

northern hemisphere. With this we �nd for the slope and curvature at the pole

@EMF
@Sx

����
Sx=Q�z=0

= 0

@2EMF

@S2
x

����
Sx=Q�z=0

= h(qe�
N
+ 2c̃1).

(4.19)

Without mw dressing qe� is positive and much larger than 2Nc̃1. �erefore, the curvature
is positive and the polar state minimizes the mean-�eld energy Eq. (4.18). In the F = 1
manifold c̃1 < 0 and, thus, the curvature changes its sign at qcr = �2Nc̃1. Consequently,
for 0  qe� < qcr the polar state becomes unstable and the spin-mixing process starts
to macroscopically populate the states (1,±1). �is corresponds to a so-called Pitchfork
bifurcation and two new stable points arise which are found by se�ing

@EMF
@Sx

����
Q�z=0

!
= 0 ) Sx ,1 = 0, Sx ,2/3 = ± 1

2c̃1

q
4N 2c̃2

1 � q2
e�. (4.20)

42

Figure 2: Mean–field nynamics on the spin–nematic sphere. The two terms in the
spin mixing hamiltonian (22) lead to a rotation around Q0 (left), and a sheering
around Ŝx (middle). This results in the formation of a seperatrix (right). For large
qeff, the phase space looks like the left panel. As qeff gets smaller, at qeff = −2c̃1 (c̃1
is negative), the seperatrix emerges at the north pole of the sphere. At qeff = 0, it
touches the south pole, while the stable point lies on the equator. The right panel
shows the phase space for qeff = −c̃1. Figure taken from [16].

evolves monotonously. The trajectory that separates the trapped and the free–
running region is called ”separatrix” (see black line in the right panel of Fig. 2).
The position of the stable point can be calculated using the fact that the phase

space is spherical (
√
Q2

0 + S2
x +Q2

yz = 1).

Espin/h = −1

2
qeffQ0 +

1

2
c̃1S

2
x. (23)

∂Espin

∂Q0

!
= 0 ⇒ Qstable

0 =
qeff
2|c̃1|

and Sstable
x = ± 1

2c̃1

√
4c̃21 − q2eff (24)

As will be presented in Section 5, the 1d system can be uniformly prepared in
a state on the equator of the spin–nematic sphere. The dynamics will be locally
compared to a simulation of the SMA equation of motion (18) and (19). In general,
the SMA is not applicable in the 1d case, since the spin observables can show a strong
spatial dependence, so that (17) is not valid. However, since the initial condition is
homogeneous in all spin observables, and in the trap center the density only varies
on the order of ∼ 10% over ∼ 70µm, it is assumed that the system locally evolves as
expected in the SMA, with c̃1 = nlocalc1. Here nlocal is the local density and thus this
is called a local density approximation (LDA). In the LDA, SMA arguments remain
valid in any infinitesimal volume element, and neighbouring volume elements are
independent in this limit. [15] [20]. It is expected to be a good approximation, as
long as any spatial structure is much larger than ξs. This condition is in met in the
experiments of Section 5, as one can see in the data.

The simulation yields the trajectory on the spin–nematic sphere for a given
initial condition as a function of time. The shape of the phase space only depends
on the ratio q/c̃1 (see fig 2), whereas the ”speed” in which a state travels on its
trajectory is given by their absolute value. Fig. 3 shows the results for different
ratios of qeff and nc1, and different initial conditions for the Spinor Phase ϕs,initial.

The expectation value of Q0 is obtained via Q0(t) = ⟨ξξξ(t)|Q̂0|ξξξ(t)⟩. The frequency of
the oscillation is obtained via a sine fit, the amplitude of the oscillations is obtained
as half difference of maximal and minimal value, and the offset is the maximal value
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Figure 3: Mean–field dynamics of Q0 in the single–mode approximation. Shown
are the frequency (left), amplitude (middle) and offset (right) of a simulation of
Q0(t) = ⟨ξξξ(t)|Q̂0|ξξξ(t)⟩ using eq. (18) and (19). A sine fit used to extract the
frequency. It is given in units on nc1, corresponding to c̃1 in (18) and (19). The
colors indicate different ratios of qeff (referred to as ”q” ind the label on the right),
and c̃1. Each color thus represents one shape of the spin–nematic phase space,
characterized by a set of trajectories (see Fig. 2). On the x axis, the spinor phase
initial condition is plotted. Thus every point on a graph belongs to a different
trajectory, characterized by its amplitude, offset and frequency in Q0. The dip in
the frequency is where the initial condition crosses the separatrix, and the frequency
goes to zero (not visible due to sampling of ϕs,initial). On the left of the dip, the state
moves on a trapped trajectory, while on the right it is free running. To interpret
the graphs shown here, Fig. 2 can be of great help. For example the dark blue line
represents trajectories for a small qeff, where c̃1 dominates and the phase space looks
almost like the middle panel in Fig. 2. This can be nicely validated, by looking
at the amplitude, which is almost zero for an initial ϕs = 0 (middle). It increases
as expected with increasing initial ϕs, while the offset (right) remains zero. The
frequency (left) goes down for increasing initial ϕs. This can not be seen by looking
solely at Fig. 2. The knowledge of the frequency for all trajectories with a given
ratio of qeff and c̃1 is the main purpose of the simulation. Note that for trapped
oscillations, the offset is independent of the initial condition as the stable point is a
property of the phase space (24). This will be used in section 5, to determine qeff/nc1
via eq. 24.

minus the amplitude. The analytical solution of Q0(t) can be expressed in terms
of elliptical sine functions [14]. Performing an exact fit of these to the simulation
however turned out do be very involved. The quality of the sine fit depends strongly
on the trajectory and especially fails close to the separatrix. It is therefore only used
to obtain the frequency, with a very precise previous estimation and small tolerances,
calculated from the temporal distance between maxima and minima of the function.
With this method, the frequency is obtained precisely and the fit quality can be
validated. The right panel of Fig 2 helps to understand the simulation results
resented in Fig. 3. A further insight into the simulation is given in the Appendix A.

2.4 Phase diagram and post quench dynamics

This Subsection, being the last part of the theoretical background, is meant to give
a short introduction into experiments that were performed in this group, where
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2.2. MEAN-FIELD DESCRIPTION

obtained by utilizing the variational principle

i~@t m(x, t) =
�E
� ⇤m
. (2.21)

Applying this to Eq. (2.14) yields the coupled GPEs for the spin-1 BEC

i~@t (x, t) =
"
� ~

2

2M
r2 + V(x) + q f 2

z (x, t) +
1
2

c0n(x, t) +
1
2

c1F(x, t) · f
#
 (x, t). (2.22)

As mentioned above, these are the classical equations of motion for the mean-field config-
uration of the condensate. Solving these equations does not encapsulate the full quantum
dynamics of the BEC and in order to recover the quantum nature of the system, we have to
result to the truncated Wigner approximation (TWA), which will be thoroughly discussed in
section 4.2.

2.2.2 Mean Field Phase Diagram

After deriving the equations of motion, we might ask ourselves which configurations of our
three-component spinor are possible? We notice in the energy functional (2.14) that the cou-
pling strengths of the U(3) symmetry breaking terms, given by q and c1 respectively, pose as
energy scales which compete with each other to determine the favored spin configuration of
the spinor. In other words, the favored occupation of the components, and with it the ground
state, is determined by these contesting energy scales [5]. This leads to a phase diagram in the
q � c1 plane which gives rise to four qualitatively di↵erent ground states of the system on the
mean-field level.

Figure 2.1: Mean-field phase diagram in the q � c1 plane. Figure taken from [5].
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FIG. 1. Homogeneous spinor Bose gas and easy-plane
ferromagnetic properties. a, We realize a homogeneous
spinor BEC of 87Rb in a box-like trapping potential by a com-
bination of an elongated attractive potential (red) and two
repulsive end caps (green; see Methods for details). The total
density (grey shading) is flat over the extent of the cloud. b,
Level structure of the F = 1 hyperfine manifold. We control
the o↵set energy between the m-states by microwave dressing
(blue shading) such that the system features easy-plane ferro-
magnetic properties in its ground state. c, The spatial degree
of freedom is continuous, however, in the analysis discretized
by the finite pixel size of the camera and the imaging resolu-
tion (⇡ 1.2 µm). Each imaging volume (boxes) contains ⇡ 500
atoms which are described by continuous fields for density and
spin. The spins orient themselves in the (easy-)plane orthog-
onal to the external magnetic field B. d, The transversal spin
features two di↵erent types of excitations: A Goldstone mode
and a Higgs mode related to the excitation of the orientation
�L and length |F?|, respectively. e, Histogram of the local
spin normalized by the atom number, combining all spatial
points and experimental realizations. In every realization the
phase of the central spatial point is subtracted. The dashed
line indicates |F?| = 0.75.

measurements based on positive operator valued mea-
sures (POVM) [5, 33]. We obtain a value for the transver-
sal spin F?(y) = |F?|e�i�L with length |F?| and orienta-
tion in the plane �L. The position y along the long axis
of the cloud is discretized by our imaging resolution; in
each typical imaging volume we infer the spin from an
average over ⇠ 500 atoms which are described by a spin
field, i.e. taking nearly continuous values (see Fig. 1b),
which we identify as the macroscopic order-parameter
field describing the spin condensation.

For studying the condensation dynamics, we initialize
the system far from equilibrium without well-defined spin
length, and fluctuations solely in the plane. We visualize
the emergence of a spin (F?) field by evaluating the his-
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FIG. 2. Emergence of long-range coherence and super-
fluidity. a, Absolute value of first order coherence |g1(x, y =
0)| of transversal spin F?; reference point (y = 0) is chosen
at the left edge of the cloud with system size L = 74 µm. We
observe a build-up of long-range order, i.e. for long times the
system features non-zero coherence over its whole size. (In-
set) Two-dimensional coherence function |g1(x, y)| after 27 s
evolution time. For long times we find the correlations to
be translation-invariant. b, Second order coherence of the
transversal spin showing the evolution and character of spin
length fluctuations. c, Superfluid properties of the spin con-
densate. Standard deviation along the cloud of spin length
(purple) and density (grey) for di↵erent speeds v of the local
perturbation. The rapid increase at finite speed indicates su-
perfluid properties of spin and density. Insets show represen-
tative single realizations of the spin length and total density
in the di↵erent regimes.

togram of F? taking into account all spatial positions and
realizations (see Fig. 1e). After 5 s, which corresponds to
⇡ 10⇥ the typical time scale of the spin interaction en-
ergy ts = h/(n|c1|), the spin is still far from equilibrium
and shows large fluctuations in orientation and length.
After 30 s (⇡ 60 ⇥ ts) of evolution time we find that the
fluctuations settle around a well-defined spin length |F?|
and the phase �L becomes well-defined over the whole
sample, i.e. long-range order emerges. This is expected
for a thermal state incorporating spontaneous symme-
try breaking in the transversal spin degree of freedom
and can be intuitively grasped by looking at the under-
lying mexican-hat-like free-energy potential (see Fig. 1d
and [34]).

To test for eventual spin condensation, we char-
acterize the coherence properties of the transver-
sal spin by evaluating first and second order coher-

ence functions [6] with g1(x, y) / hF̂ †
?(x)F̂?(y)i and

Figure 4: Left: Mean–field phase diagram in the qeff–c̃1 plane. Right: Mean–field
energy potential in the easy–plane phase. The polar state at the center is unstable,
the ground state is characterized by a non–vanishing spin length and a Larmor
phase. Note that this representation is connected to the spin–mixing dynamics on
the spin nematic sphere (see Fig. 2), where the rim represents the stable point in
Sx. This visualization emphasises that the ground state is characterized by a certain
spin length, independent on the orientation. This potential does not show, however,
that the transversal spin length can be reduced in two ways (without rotating the
vector into Fz), namely by changing the spinor phase, or the side mode population,
which is seen better in the representation on the spin–nematic sphere.

universal dynamics far from equilibrium was observed [12]. A recent paper has
linked this dynamical behavior to vortices in the transverse spin F⊥ in space and
time [13]. These vortices are associated with a dip in the spin length F⊥, and aa
2π–winding of the spin orientation, that is, the Larmor phase ϕL on a closed curve
around that dip in space and time. Therefore, they will also be referred to as vortices
in the Larmor phase. Developing a scheme for the deterministic preparation of such
a vortex was the main motivation for the work of this thesis.

The parameters qeff and c̃1 span a phase diagram, which is depicted in Fig. 4
(left). The different phases are associated with different mean–field ground states.
In the experimental setup, c1 has a fixed negative value due to the ferromagnetic
interaction of 87Rb and cannot be changed. With control over qeff, the system can
be prepared in three different magnetic phases: the polar, the easy–plane, and the
easy–axis phase. A sudden change of qeff is referred to as “parameter–quench”.

Of special interest is the second–order quantum phase transition from the polar
to the easy–plane phase. Starting in the ground state of the polar phase (polar
state, with zero magnetization), quenching into the easy–plane drives the system to
a far–from–equilibrium state in the new Hamiltonian. The easy–plane ground state
is a state in the FxFy–plane with a non–zero spin length, thus the order parameter
in this phase is the transversal spin F⊥ = Fx + iFy, and the phase transition breaks
the SO(2) symmetry of the polar phase.

The initial dynamics in an elongated system after a parameter quench can be
described by the Bogoliubov approximation, that predicts the growth of certain
momentum modes in the transversal spin [11]. Nonlinear interactions lead to the
formation of spin domains, setting the stage for the subsequent ordering process.
After some time, the subsequent dynamics show a self–similar scaling behavior of
the structure factor S(k, t) = ⟨|F⊥(k, t)|⟩, associated with the proximity to a non–
thermal fixed point. ⟨...⟩ denoting the average over different runs. The self–similar
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scaling has been extensively studied in theory [7, 11, 21], and has been observed
for the first time in this experiment in 2018 [12]. A numerical study has linked
universal dynamics in the quenched spinor BEC to rogue–wave like events in the
single magnetic components, resulting in real–time instanton defects, that appear
in the Larmor phase as vortices in space and time [13]. Taken from that work, Fig.
5 shows an excerptn of a single run of the simulated space–time evolution after a
quench. Instantons are associated with a change in the winding number

Qw =
1

2π

∫ L

0

dx
∂ϕL

∂x
∈ Z, (25)

which has to take integer values, since the simulation is performed with periodic
boundary conditions.

3

FIG. 2. Structures and defects in the time evolution of the Larmor phase after a quench (units chosen as in Fig. 1). (a) Section of time
evolution of the winding number Qw for the run shown in panel (b). (b) Space-time evolution of the Larmor phase of the transversal spin
F? = |F?| exp

⇥
i'L

⇤
across the entire system in a single Truncated-Wigner (TW) run, with the spin speed of sound cs =

p
n|c1|/2M indicated

as a dashed line. In the strongly fluctuating system, vortex structures in space and time are observed, as the phase wraps around one point
(cf. zoom in panel (c)). A plaquette algorithm, correlating the winding number with a dip in the spin length, detects instantons (orange) and
anti-instantons (black), each causing an integer jump in the winding number Qw(t). (c) Structure of the real-time instanton. In the upper panel,
the averaged |F?| profile of a defect located at x0 at time t0 is depicted. The lower panel shows the vortex-like nature of the defect in more
detail, around which the Larmor phase winds by 2⇡. (d) The lower panel shows the corresponding intersection of two rogue waves in  ±1 at
the position of the instanton, recall Fig. 1a. The upper panel exhibits the temporal evolution (bright to dark pink) of the F? field configuration
in spin space, within the window shown in the lower panels. The outer circle represents a histogram (black to bright red color code) of spin
orientations in the Fx-Fy plane averaged over 100 TW runs.

in the easy-plane, and hFzi = 0. Yet, we obtain exponential
correlations in the diagonal elements hTr[V(x, t)V(0, 0)]i =
V2

0 exp
⇥ � x/`V (t)

⇤
, with strength V0 and a correlation length

scale `V , whereas the o↵-diagonal elements of the correlation
vanish, see App. B 2 for details.

For a propagation in random media, the time needed for the
waves to focus, i.e., the mean time to caustics tc, depends only
on the correlation length `V of the random medium and on the
strength V0 of the fluctuations [64–71]. In contrast to the stan-
dard case studied in the context of caustics, the intricate inter-
actions between the components of the condensate cause the
correlation length to dynamically scale in time. Our numer-
ical simulations confirm the scaling of the correlation length
of the noise term in Eq. (3) as `V (t) ⇠ t �V , with �V = 0.252(3),
cf. Apps. B 1 and B 2. Generalising the arguments used in [64]
to Bogoliubov modes, one finds the mean time to caustics to
scale as tc ⇠ ` 4/3

V , for details see B 2. Thus, a temporally
growing correlation length `V (t) ⇠ t �V , with �V ' 1/4, im-
plies that the mean time to caustics scales in time as tc ⇠ t �c ,
with �c = 4�V/3 ' 1/3.

The observed power-law coarsening indicates a close con-
nection with the spatio-temporal scaling of the structure fac-
tor S F? (t, p) = hF?(t, p)†F?(t, p)i of the transverse spin F? ⌘
Fx + iFy = |F?| exp

⇥
i'L

⇤
as found in [50] (cf. App. B 1),

S F? (t, p) = (t/tref)↵ fs([t/tref] �p) . (5)

Here fs is a universal scaling function, which depends only on
the momentum p, tref is a reference time within the scaling in-
terval, and the scaling exponents ↵ = 0.27(6) and � = 0.25(4)

are, within errors, related by ↵ = d�, d = 1, ensuring the mo-
mentum integral over S F? (t, p) to be conserved. The scaling
is a manifestation of the coarsening of an infra-red (IR) cor-
relation scale, growing as `⇤ ⇠ t �⇤ , which in turn gives rise
to the algebraic increase of the noise correlation length scale
`V with the same exponent, �V ' �⇤, as is confirmed within
errors by our simulations.

Real-time instantons. In the emerging post-quench dynam-
ics, the confluence of rogue-wave excitations in the veloc-
ity fields v±1 manifests itself as an interplay of strong phase
kinks in  ±1. Analyzing the propagation of the velocity fields
over many realizations reveals that the encounter of two fo-
cused waves with opposite signs, each in a di↵erent compo-
nent (Fig. 1a), results in an overall phase jump in the Larmor
phase, forcing 'L into the next Riemann sheet. As a result,
the Larmor phase changes its overall winding number across
the system in time, an event which we refer to as a real-time
instanton. Instantons are of strong relevance in fundamental
studies of quantum field theory and matter [80, 81], as well
as various applications, including false vacuum decay [82–
84]. Phenomena closely related to the real-time instantons
we study here include coherence vortices [85] and phase slips
[86–90].

Instantons in the Larmor phase. As can be seen in the lower
panel of Fig. 2c, a vortex-type defect occurs in the Larmor
phase, at a time t ' 132 ts and position x ' 271 ⇠s, at the inter-
section of phase kinks, where a strong rogue-wave excitation
occurs. In the upper panel of Fig. 2d, we demonstrate that the
defect manifests itself as a trajectory of the field configuration
in the vicinity of this point propagating through the center of
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in spin space, within the window shown in the lower panels. The outer circle represents a histogram (black to bright red color code) of spin
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strength V0 of the fluctuations [64–71]. In contrast to the stan-
dard case studied in the context of caustics, the intricate inter-
actions between the components of the condensate cause the
correlation length to dynamically scale in time. Our numer-
ical simulations confirm the scaling of the correlation length
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are, within errors, related by ↵ = d�, d = 1, ensuring the mo-
mentum integral over S F? (t, p) to be conserved. The scaling
is a manifestation of the coarsening of an infra-red (IR) cor-
relation scale, growing as `⇤ ⇠ t �⇤ , which in turn gives rise
to the algebraic increase of the noise correlation length scale
`V with the same exponent, �V ' �⇤, as is confirmed within
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Real-time instantons. In the emerging post-quench dynam-
ics, the confluence of rogue-wave excitations in the veloc-
ity fields v±1 manifests itself as an interplay of strong phase
kinks in  ±1. Analyzing the propagation of the velocity fields
over many realizations reveals that the encounter of two fo-
cused waves with opposite signs, each in a di↵erent compo-
nent (Fig. 1a), results in an overall phase jump in the Larmor
phase, forcing 'L into the next Riemann sheet. As a result,
the Larmor phase changes its overall winding number across
the system in time, an event which we refer to as a real-time
instanton. Instantons are of strong relevance in fundamental
studies of quantum field theory and matter [80, 81], as well
as various applications, including false vacuum decay [82–
84]. Phenomena closely related to the real-time instantons
we study here include coherence vortices [85] and phase slips
[86–90].

Instantons in the Larmor phase. As can be seen in the lower
panel of Fig. 2c, a vortex-type defect occurs in the Larmor
phase, at a time t ' 132 ts and position x ' 271 ⇠s, at the inter-
section of phase kinks, where a strong rogue-wave excitation
occurs. In the upper panel of Fig. 2d, we demonstrate that the
defect manifests itself as a trajectory of the field configuration
in the vicinity of this point propagating through the center of

Figure 5: Time evolution of the Larmor phase after a quench (a) time evolution
on the winding number Qw for the run shown in panel (b). (b) spatio–temporal
evolution of the Larmor phase in one single run. The dashed line indicates the spin
speed of sound. (c) Structure of the real–time instanton. The upper panel shows
averaged F⊥ profiles for several defects. The lower panel is a zoom in panel (b)
and shows the vortex–like structure of the defect in the Larmor phase, indicated
by the orange circle, around which the phase exhibits a 2π–winding. (d) The F⊥
field configuration for three different times (bright to dark pink), in spin space. The
outer red circle represents a histogram over 100 runs. The instanton is associated
with a local crossing of the center of the FxFy–plane. There the spin length has to
go to zero, and the winding number changes by ±1, depending on the direction of
the traversal.

A comparable excerpt of the post–quench dynamics from experimental data can
not be obtained. As a measurement destroys the BEC, each subsequent measure-
ment in a time series can only show the time evolution of a different state at a
certain time. Objects like the vortices in the Larmor phase that show up randomly
can thus not be observed. Starting from a different initial condition that allows the
deterministic preparation of a vortex, however, can in principle be archieved, and
poses one goal of this work (see Section 6.3).
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3 Experimental system

Following the theoretical introduction to the spin-1 system, the experimental setup
will now be presented: A quasi–1d spinor Bose–Einstein condensate of 87Rb, con-
sisting of roughly up to 150k atoms. A typical experimental sequence consists of
three stages: state preparation, time evolution, and readout of the final state.

After a sequence of different trapping and cooling stages, the atoms are con-
fined in an elongated optical dipole trap. The trap frequencies are approximately
(ω∥, ω⊥) ≈ 2π × (2, 250) Hz [16]. The electron spin S = 1/2 and the nuclear spin
I = 3/2 couple to two hyperfine spin states F = 1, 2, giving rise to the magnetic
sublevels |F,mf⟩, with mf = −F, . . . , F (see Fig. 6, center). The experiments
take place in a homogeneous magnetic field (∼ 1G), defining the quantization axis
along the z–direction. This leads to an energy shift of the levels in both hyperfine
manifolds, given by

Ez/h = g1,FmfB + g2,F (4−m2
f )B

2 (26)

with the first– and second–order g–factors [16]

g1,F =

{
−700 kHz/G for F = 1

702 kHz/G for F = 2
and g2,F =

{
−72 Hz/G2 for F = 1

72 Hz/G2 for F = 2
. (27)

The Hamiltonian due to these magnetic field shifts is for the F = 1 manifold given
by

ĤB/h = pBŜz + qBQ̂0 (28)

with pB = g1,1B and qB = g2,1B
2 being the first– and second–order Zeeman shift,

respectively. Thus, the first–order Zeemann effect causes an evolution of the Larmor
phase (ωL ≈ 2π ·700kHz), and the second–order Zeemann shift leads to an evolution
of the spinor phase (ωS ≈ 2π · 72kHz).

Global rf and mw control

Within one hyperfine manifold F, the magnetic sublevels can be coupled via rf fields,
using two rf–coils. An rf–coil generates an oscillating B field perpendicular to the
offset field. In the rotating frame of the atoms, the time evolution of their state is
governed by [16]

Ĥrot
B = ℏΩrf,0[cosϕrfŜy − sinϕrfŜx]− ℏδŜz (29)

with the detuning δ = ωL − ωrf. A resonant rf–pulse (ωrf = 2πpB) induces Rabi os-
cillations with a frequency given by the resonant Rabi frequency Ωrf,0 = |g1,1|Brf/2.
The rotation axis for a Rabi pulse is defined by the phase of the rf–pulse. The two
coils are needed to selectively address the two hyperfine manifolds, which is impor-
tant for the readout. One of them is also used to compensate/induce gradients of
the offset magnetic field.

For coupling between two levels in different hyperfine states, a mw–coil is used
(see Fig. 6b). This corresponds to a two-level system, described by the spin–
1/2 operators. The selection rules for dipole transitions allow only transitions with
∆mf = {0,±1}. The mw generator is always set to a fixed frequency of 6.8GHz, that
corresponds to the hyperfine splitting of the F=1 and F=2 manifold. The signal is
fed into an I/Q mixer, the additional inputs of the mixer are rf signals from an AWG
to control the phase and frequency of the micro wave. After that, the signal passes
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3 EXPERIMENTAL SYSTEM

Figure 6: Left: Sketch of the experimental setup. The BEC is confined in a dipole
trap within a glass cell. The two dipole lasers are referred to as WG and XDT. For
the performed experiments in the 1d system, the XDT is turned off, so that the cloud
is extended in the x–direction. Two rf–coils and a mw–coil are employed to control
the atoms. Middle: Level–scheme of 87Rb. Inside one hyperfine manifold, rf pulses
couple the magnetic sublevels. The mw pulses are used to couple states between
the manifolds. Right: Example of an absorption image revealing the densities in the
individual sublevels. Figure is adapted from [22].

an electronic switch and an amplifier before it is radiated from the antenna close
to the atoms. Short mw pulses that resonantly couple specific magnetic sublevels
between the two hyperfine manifolds are used for state preparation and readout.
During the time evolution of a state, off–resonant coupling of the two mf = 0 states
is used to control the second–order Zeeman shift (see Section 5).

Local control

Additionally to global control via rf and mw fields, also a steerable laser allows
for local control. Its timing, position, and intensity is controlled via two acousto-
optic deflectors (AODs), for the horizontal and vertical beam position. The setup
is discussed in detail in [17]. The off–resonant interaction of the laser light with
the atoms is described by the AC–Stark effect, consisting of a scalar and a vector
component [23]:

ĤStark = −1

4

(
αs(EEE∗

1 ·EEE2)13 −
iαv

2F
(EEE∗

1 ×EEE2)F̂̂F̂F

)
, (30)

with the light field componentsEEEj = EjEEE je
i(ωjt+ϕj) , scalar and vector polarizabilities

αs and αv, and Spin Operator F̂̂F̂F . Making use of the vector Stark shift, the local
laser is able to create a fictitious magnetic field in beam direction, given as [17]

BBBfict =
iαv

8gFµBF
EEE∗

1 ×EEE2. (31)

The first term in (30) gives rise to the scalar Stark shift which is describing the
dipole force that is e.g. used for the dipole trap. Since the polarizabilities α include
transition matrix elements of the atoms, they depend on the detuning of the laser
light with respect to the possible atomic transitions. The dipole force is attractive
for red, and repulsive for blue detuned laser light. For a wavelength of ∼ 790.081nm,
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3 EXPERIMENTAL SYSTEM

between the D1 and D2 absorption lines, the scalar shifts due to the two transitions
cancel out for the F = 1 manifold. The tune–out for the F = 2 manifold lies at
∼ 790.032nm [24–26]. This difference is however small enough to be negligible for
the cases discussed here. This wavelength is chosen for the local beam to create
local spinor phase rotations (see Section 4 for details).

Readout

The readout allows the measurement of non–commuting spin observables by using
the F=2 manifold. Note, that the physics of interest are confined to F=1 and F=2
thereby is only used in terms of preperation and readout sequences. The readout
is in detail discussed in [16, 22]. First, global spin rotations are used to map the
desired observables to the measurable occupation numbers of the hyperfine levels.
A magnetic field gradient in z-direction is then applied (Stern–Gerlach pulse) to
spatially separate the magnetic sublevels. Followed by a short time of flight (∼ 2ms)
the populations in the sublevels are then measured via high–intensity absorption
imaging. In this work, a dual readout of Fx and Fy is used to obtain the complex
valued transverse spin F⊥ = Fx + iFy. Note that with F⊥ = |F⊥| · eiϕL the readout
spatially resolves the Larmor phase, up to a global phase that may differ for different
experimental realizations. This is due to fluctuations in the offset magnetic field and
becomes relevant for evolution times larger than roughly (∼10ms). In the following,
F⊥ is often used interchangeably with its absolute value |F⊥|. In addition, the Fz

readout is used to obtain Fz and Q0. The sequence of the readout and the calculation
of the spatially resolved spin observables from the atom numbers in the individual
levels is given in [17].
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4 LOCAL CONTROL OF THE SPINOR PHASE

4 Local control of the spinor phase

In the following, the experimental scheme for local spinor phase imprints will be
presented. We will then present and discuss calibration measurements that confirm
the reliabiltiy of the imprinting technique and point out how to utilize the presented
method in order to generate interesting initial conditions.

4.1 Method for local spinor phase rotations

The underlying idea of the local spinor phase imprint is to use the fictitious B-Field of
the local laser (see eq. 31 and [17, 27] for details), to create the desired phase imprint
in the single mf components. In an external magnetic field, the single magnetic
levels experience a relative phase evolution proportional to their magnetic quantum
number mf and the B–field (neglecting the second–order Zeeman shift, interactions,
and a total global phase evolution depending on the chemical potential):

d

dt

(
ϕF,mf

(x)
)
∼ mfg1,FB(x), with B(x) = |BBBoff +BBBfict(x)| (32)

BBBoff being the offset magnetic field (∼ 1G) and BBBfict(x) the perpendicular fictitious
field created by the local laser beam at the tune–out wavelength. In the case of a
state in the F=1 manifold with non–zero densities in all three mf sublevels, this
would locally lead to the accumulation of a spatially dependent Larmor phase. Lo-
cally the Larmor phase ϕL(x) = (ϕ1 − ϕ−1)/2 has a faster time evolution, thus after
a time Thold, a different phase is accumulated than in the rest of the cloud, leading to
a local shift of the Larmor phase ∆ϕL(x) ∼ B(x)Thold, and thus a locally modified
spin direction. Adapting this idea to the spinor phase ϕS = ϕ0 − (ϕ1 + ϕ−1)/2,
one can make use of the very similar (but opposite sign) g-factors of the F=1 and

t [μs]

mwrf mw

t0Thold~ 100 to 50073 14 42 42 514

Figure 7: Scheme of the local imprint technique: Initially, only the |F,mf⟩ = |1,−1⟩
atoms are trapped (left). The two hyperfine manifolds are represented in blue and
green, with red dots representing the densities in the individual levels. An rf pulse
(red) prepares a state in the FxFy–plane. The circular arrows indicate the rotation
of the phase with respect to the mf = 0 states. Subsequently, a mw pulse (blue)
transfers the atoms from |1,−1⟩ to |2,−1⟩. At this point, the two side modes rotate
in phase, with a frequency dependent on the B-field. After the time Thold, the atoms
are transferred back with another mw pulse. A spinor phase, represented by the
function ϕs(x) ∼ B(x), has been accumulated over this period. At the time t0, the
state preparation is completed, and the time evolution begins. The 514µs follow-
ing the second microwave pulse are required for the proportional-integral-derivative
(PID) controller that regulates the microwave dressing. The layout of this Figure is
adapted from [16], and the rf and mw pulses are defined in a similar manner.
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4 LOCAL CONTROL OF THE SPINOR PHASE

F=2 manifold. Transferring the atoms of one F=1 sublevel with mf ̸= 0 to the
F=2 sublevel with same mf , during the time Thold (and subsequent back–transfer),
allows to obtain a Spinor Phase evolution depending on the B–field, and thus also
featuring the local imprint due to the laser beam. The scheme is depicted in Fig. 7.
At t0, the evolution time begins.

Globally, a Spinor Phase Imprint would also work without the time Thold between
the two mw pulses. The phase imprint would then just be depending on the relative
phase of the two mw pulses. However this method does not allow for a local phase
rotation. The imprint method does not change the Larmor phase locally, since for
the times Thold considered here, the difference of the g-factors of ∼ 0.3% as well as
the second order Zeeman effect are negligible.

Since there is a certain jitter in the position of the beam in both the hori-
zontal and vertical direction, the method of using several pulses in the z-direction
was adopted from [27]. Each imprint position on the condensate consists of three
subsequent pulses in the z-direction, which turned out to be sufficient. Their posi-
tional spacing is ∆fAOD, V = 0.14MHz (given as the vertical AOD frequency). This
was found to be the optimal frequency spacing for a homogeneous beam profile in
transversal direction in [27] by applying amplitude modulation to the local beam
(and thereby inducing a local rf rotation) and imaging the density profile in the Sz

readout. Their temporal separation is a buffer time of τbuff = 4.5µs. It is needed as
the sound wave in the AOD of consecutive pulses would otherwise interfere. During
the time Thold, several horizontal positions in the cloud can be illuminated consec-
utively to create the desired imprint shape. The frequency of the horizontal AOD
fAOD, H controls the position with 1MHz =∧ (39.5± 0.8)µm. A schematic of this idea
is presented in Fig. 8. Thold then has to be adjusted so that the pulses, including
the buffer times, fit into the given time window. The duration of each pulse is given
as τB,i. With each imprint position consisting of three pulses, the condition for Thold
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Figure 8: Conceptual scheme for using multiple imprints to create a desired shape
in ϕS and F⊥ (bold blue and green). Here a cosine–shaped profile is imprinted in the
Spinor phase using 13 individual imprint positions (blue). The single imprints are
represented by Gaussians in the spinor phase with different amplitudes, separated
by roughly 1.5σ. In the experiment, each imprint position is realized by three
subsequent laser pulses with the same horizontal position, given by the frequency
fAOD, H, and three vertical positions {fAOD, V, fAOD, V ±∆fAOD, V}.
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4 LOCAL CONTROL OF THE SPINOR PHASE

reads

Thold
!
>

N∑
i=1

3(τB,i + τbuff)− τbuff (33)

for a total imprint imprint using N single imprint positions, and thus requiring in
total 3N beam positions. The current experimental setup allows a maximum of 14
beam positions, corresponding to 42 single laser pulses, as the programming of the
AWGs for the local control causes problems with more pulses.

4.2 Experimental analysis of the state preparation

First, the effect of changing the time Thold was observed without local laser pulses.
The local imprint was then tested with one beam position for different beam times
and powers.

4.2.1 Background oscillation

The obtained data are shown in 9a. The data were taken after an evolution time
of 5µs with the FxFy –readout (see Section3). The F⊥ profile is flat over the whole
condensate, with an offset F⊥,BG depending on Thold. The latter is expected to
globally rotate the spinor phase ϕS,BG ∼ Thold, thus with (15), an oscillation is
expected for F⊥,BG. However, the observed frequency of f = (15.9 ± 0.18)MHz is
much higher than the expected value of ∼ 700kHz (which is the Larmor frequency
in our external B–field of ∼1G, see eq. 28). The explanation is found by looking
at the signal of the TTL switch that is controlling the exact timing of the second
mw pulse, and the IQ AWG signal that enters an I/Q–mixer with the microwave
signal to control the frequency and phase of the mw pulse. The time Thold is set
in the script that programs the AWG for the TTL switch as well as the IQ AWG.
While the TTL AWG gets all timings rounded to 0.1µs, the IQ AWG gets its timings
without rounding. Looking at the AWG signals on an oscilloscope (see 9b), one can
see that a change of ∆Thold = 10ns leaves the TTL unchanged but induces a delay
of 10ns of the IQ AWG signal. This causes a phase shift of the second mw pulse and
explains the fast oscillation in 9a. The phase of the second mw pulse determines
the phase of the mf = −1 sublevel with respect to the other two sublevels and thus
affects both Larmor and spinor phase. This is seen in Figure 9a, as both spin length
and orientation vary. Recalling the definitions for ϕL and phiS explains that the
oscillation in both is just given as half the frequency of the IQ AWG. What was
effectively scanned in this experiment was the phase of the two mw pulses, and not
the time Thold.
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(a)

150 100 50 0 50 100
t [ns]

Vo
lta

ge
 [a

.u
.]

TTL switch
IQ AWG ch1, t = 0
IQ AWG ch1, t = 10ns

(b)

Figure 9: Left: Spin length (blue) for different values of Thold with Thold =
103µs + ∆Thold. Error bars are the square root of the variance of 2 to 4 realiza-
tions. This is of course not enough statistics to obtain a meaningful estimation of
the actual error, but serves as a first idea of the fluctuations. The fit function (red)
is F⊥ = F 0

⊥| cos(2πf + δ)| and yields a frequency of f = (15.90 ± 0.18)MHz. The
inset shows the spin orientation for different times, indicated by the color. Right:
Oscilloscope data of the TTL switch (blue) and the IQ AWG (orange and green)
signal on the onset of the second mw pulse in the state preparation. The TTL switch
controls the timing of the mw pulses. The IQ AWG is used to modify frequency and
phase of the mw pulses, and is added to the mw output in an I/Q–mixer. One can
see, that for two different timings ∆t (defined as in fig 9a) the TTL switch does not
change, but the phase of the AWG output. This explains the fast oscillation in the
left figure. The frequency f corresponds to half the frequency of the signals in the
AWG output.

4.2.2 Analysis of shape and depth of the local imprint

The initial condition (5µs evolution time) in F⊥ was measured for different local
imprints. Beam times τB between 0 and 20 µs were chosen for AOD powers between
0.7 and 1.5 Volts. The power is given in units of Volts, as it is set in the control
system of the experiment as the amplitude for the AWG signal that controls one of
the AODs for local control, while the other one is always set to 1.6V. As mentioned
above, the imprint consists of three consecutive pulses with different y–positions.
τB refers to the duration of each of these pulses. All measurements were performed
with the same Thold of 103.1µs, where the background spin length is expected to
be maximal (see Fig. 9a). The imprint position was chosen to be very far to the
right of the condensate, since otherwise the imaging of such short evolution times
interfered with stray light of the local imprint. This effect was experimentally found
to be small for beam positions with vertical AOD frequencies fAOD, vert. < 97.6Mhz.

Examples of the imprint shape are shown in figure 10 (upper panel), together
with the fit function that was used to determine the depth and width of the imprint.
The fit function is

F⊥(x) = F⊥,0

∣∣cosϕs(x)
∣∣, with ϕs(x) = ϕx0

s · e−
(x−x0)

2

2σ2
B + ϕs,BG, (34)

and shows a very good agreement with the data. F⊥,0 respects, that even a fully
elongated spin (ϕS = 0) does not necessarily lead to a measured value of F⊥ = 1
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(see e.g. Fig. 9a). ϕx0
s is the relative spinor phase at the center x0 of the imprint

with respect to the background Spinor Phase ϕs,BG. Assuming a Gaussian shape in
the spinor phase, σB describes the width of the imprint.

The fit was applied to single realizations (∼ 20 per setting) and thus quite noisy
data. Especially for smaller imprints, the noise is more relevant, and thus the fit
function uses the many free parameters (F⊥,0, ϕs(x0), x0 and σB) to fit the curve
to the noise. The lower left panel of figure 10 is the histogram of the imprint
widths obtained from single fits, showing values of σB = (5.7 ± 0.7)µm. The many
occurrences on the left edge of the fit range (∼ (4.9 − 6.5)µm) are mainly due to
small imprints, where the noise is dominant. Also, the imprint was made on an
elongated spin (ϕs ≈ 0), so that very small imprints are invisible in F⊥ anyway (see,
e.g., eq. 34). The peak on the right stems from strong imprints, where the upper
limit of the fit range was mandatory since otherwise the fit converged to a wrong
shape, not featuring the sharp structure at the imprint center (see upper right in
Fig. 10). In general, an increase of σB was observed with the imprint strength,
but was not significant with respect to the fit errors (given as the 1σ confidence
interval of the fit). This might be due to a non–Gaussianity of the imprint that is
compensated, and most likely also due to density effects (see below). The position
of the imprint is shown in the lower middle panel of Fig. 10. It shows roughly a
Gaussian distribution with a standard deviation of 0.7µm, which is approximately
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Figure 10: Upper panels: different examples of the spatial F⊥ profile. The blue dots
are the data of one single realization representing three binned pixels. The red curve
is a fit function, assuming a Gaussian imprint in the spinor phase (see eq. (34)).
Labels give the time and power of the local beam, as well as the width obtained from
the fit for the shown realization. Lower panels: (left) histogram of the fit result for
the beam width σB. (middle) histogram of the fit result for the beam position x0.
A gaussian fit yields a jitter of 0.7µm. (right) the total density exemplary for the
strongest AOD power (1.5V). An overdensity is created for increasing beam times.
For very strong and sharp overdensities (long beam times), the time to the imaging
of ∼ 2ms is enough to let the peak split. For lower powers, only the overdensity,
and not the splitting is ovserved.
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0.1σB.
Figure 11 (left) shows the dependence of the imprint depth on the beam time

for different beam powers (controlled by the AOD). For all AOD powers and most
beam times, an error in the imprint depth of roughly ∆ϕx0

s ≈ 0.1π is observed.
This might be due to actual fluctuations in the imprint depth, but can also be
due to the problematic choice of the elongated background spin. To disentangle
the two effects, it would be beneficial to repeat the measurement at a different
background spin length. Due to better visibility, only three of eight measured AOD
powers are shown in the plot. In the most simple case, one would expect a linear
increase of ϕs(x0) with τB. However, three more effects are visible here: A concavity
down/damping for long times as well as deep imprints, and a concavity up for very
short times, which is mostly visible for the strong powers. The concavity up of the
curve for small times τB can be understood as the fit is very sensitive to the noise for
small imprints and seems to overestimate the imprint depth systematically. Also,
the sound wave in the AOD needs some time to build up. For AOD powers below
0.9, the spinor phase cannot be rotated more than 0.5π due to the damping effect,
while for the largest power, the curve appears to get some damping after ∼ 10µs.
Both damping effects might have to do with density effects. The total density for
the strongest AOD power is shown in the lower right panel of Fig. 10. Since the
tune-out wavelength (see Section 3) might not be perfectly matched, the scalar stark
effect does not vanish, and the local imprint laser creates an attractive potential.
This leads to atoms with the background spinor phase to flow to the beam center,
so that the imprint is effectively weakened. For small powers, it might also be useful
to remember that the offset B–field and the fictitious B–field are perpendicular, so
that they add squared and not linearly. For very strong imprints, the over density is
so large that the short time to the imaging of a few µs is enough for the local wave
packet to disperse and split into two packets propagating outwards. This is only
achieved for the large powers that create a sufficiently strong dipole potential and
can thus only explain the damping for very strong imprints. The given explanation
of the density effects is still somewhat speculative, and can be tested by for example
scanning the wavelength of the local laser.

Despite the previously discussed deviation from the expected linearity, a linear
fit was performed to a hand–picked linear regime of the curves in the left panel of
Fig. 11. Thus one has to be careful interpreting these data. The result is shown on
the right in the Fig. 11. As expected, one can see an increasing slope (upper right).
The exact functional shape depends on the diffraction efficiency of the AOD and the
quadratic addition of the offset and fictitious B–field. The lower right panel shows
the x–intercept of the fit. It lies at ∼ 2.5µs for the larger powers, and significantly
lower for small powers. This is because the small powers show almost no linear
regime (see the blue curve in Fig. 11, left), and thus are not suitable for this fitting
method. The x–intercept is interpreted as the time that is needed for the sound
wave in the AOD to build up. The AOD size and sound velocity give timings on the
order of a few µs. This is also why in between two pulses, a buffer time is needed, as
already mentioned in [27]. To improve this measurement, it has to be repeated with
a different background spinor phase, that is, a different THold, to obtain a better
signal for small imprints. Also, the local imprint laser wavelength might have to be
changed to better match the tune–out wavelength.

The main results of this analysis are that the Gaussian in the spinor phase
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Figure 11: Left: The fit result for the Spinor Phase at the center of the imprint ϕx0
s

is plotted against the beam times for different AOD powers. For each setting, the
fit is performed for ∼ 20 realizations, the error bars are the standard deviation of
the fit result. Right: A linear fit is applied to a hand–picked linear regime in the left
plot. The slope (top) and the x–intercept (bottom) are plotted against the AOD
power.

describes the imprint well, with a width of (5.7 ± 0.5)µm. To create an imprint,
times larger than τB ≈ 2.5µs have to be used. Density effects may lead to a damping
of the imprint. For low AOD powers (< 1V) this damping prevents imprints deeper
than 0.5π, while for large powers, the damping becomes relevant for imprints deeper
than 0.6π. The positional jitter of the imprint is 0.7µm.
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5 Global spin dynamics

The dynamics of homogeneously prepared spin profiles is studied for different second–
order Zeemann shifts qeff. After presenting the experimental method for the control
of qeff, the results of the experiments are analyzed and discussed.

5.1 Control of the second–order Zeemann shift

After a desired initial condition is prepared, usually a time evolution under a given
Hamiltonian is of interest. The two contributing parts in the spin mixing Hamil-
tonian are the spin-spin interaction ∼ c̃1 and the second–order Zeeman shift ∼ qeff
(see (20)). The value of qeff/c̃1 determines the position in the phase diagram (see Fig.
4), and thus the ground state and the overall shape of the phase space (see Fig. 2).
The microscopic process behind this interplay is the mechanism of spin–changing
collisions (SCC) (see Fig. 12). The density independent spin interaction constant
c1 is a property of the 87Rb atoms and has a fixed negative value (ferromagnetic
interaction). The effective value qeff is shifted by dressing the system with microwave
radiation and thus tuning the SCC to resonance [16]:

qeff = qB + qmw with qmw =
Ω2

2π4δmw

, (35)

where qB is a property of 87Rb and applied offset B–field (see eq. 28) and qmw

is the shift due to the dressing. The resonant Rabi frequency Ω depends on the
field strength of the mw radiation and the detuning δmw to the atomic transition.
Since Ω is not known exactly and fluctuates, the value of qeff has to be measured
experimentally and is crucial for a comparison of experimental results to theory.

To realize different values of qeff in the experiment, the mw frequency and thus
the detuning δmw is changed. The value that is set in the script that programs
the mw generator is qexp and is expected to linearly influence qmw, with a slope of
approximately 1.

Over longer measurement periods (∼days), qeff as a function of qexp can shift. To
track these shifts, SCC–spectroscopies can be performed([16, 17, 28]).

4.3. EXPERIMENTAL CONTROL

Figure 4.1.: Experimental energy scales: a) As illustrated here, the �rst-order Zeeman
shi� is not the relevant energy scale for the spin-mixing process, since the
energy required for generating a particle in the state (1,�1) is gained by
generating one in the state (1,+1). b) One therefore needs to consider the
second-order Zeeman shi� (qB) which detunes the spin-mixing process from
resonance. Using o�-resonant mw coupling between the states (1, 0)$ (2, 0)
we can tune this energy spli�ing which gives us control over the spin dynam-
ics.

where µTF is the chemical potential. For µTF < Vext(r ,�), the density vanishes, which
means that, within this approximation, the condensate �lls the external potential up to
the chemical potential which is given by

µTF =
~�ho

2

✓
15N
aho

a0 + 2a2
3

◆2/5
(4.11)

with �ho =
3
q
�2
? · �k and the corresponding harmonic oscillator length aho =

p
~/M�ho.

In the single-mode approximation we can then calculate the mode overlap via

� =

π
dr |� c(r )|4 = 2�

π
r dr d� |nTF(r ,�)/N |2. (4.12)

�e limits of this integration are given by the �omas-Fermi radii which are found by
se�ing

M

2 (�2
?r

2 + �2
k�

2) !
= µTF. (4.13)

With this, we �nd for the mode overlap

� / N �3/5 (4.14)

and thus, we get for the atom number dependence on the interaction strength

� / N � / N 2/5. (4.15)

4.3. Experimental control

�e spin-mixing process conserves the magnetization of the state and therefore the
energy under the �rst-order Zeeman shi� stays constant (see Fig. 4.1a)). Mathematically,
this means that the energy contribution of the �rst-order Zeeman shi� can be removed
from the dynamics using Lagrange multipliers [99]. �e relevant detuning for this process

40

Figure 12: (a) Two particles in the mf = 0 state scatter into an entangled pair with
one particle in the mf = −1 and on in the mf = +1 state. (b) by off-resonant MW
coupling of the mf = 0 state to the F=2 hyperfine manifold, the quadratic zeeman
shift can be experimentally controlled. Figure taken from [16]
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5.2 Experimental investigation of spin dynamics

The objective of the presented experiments in this Section is to determine the values
qeff and c̃1, where the latter locally represents the effective spin–spin interaction in
our quasi–1d system. To do so, the experiments are locally (a region of ∆x ≈ 4µm
near the trap center) compared to a simulation of the EOM in the SMA (18) and
(19), see Fig. 3, which is valid in the LDA (see Section 2.3). As discussed briefly in
Section 2.3, the LDA is a valid approximation [15], if the state does not feature any
spatial structure on the order of the spin healing length, which is roughly ξs ≈ 5µm
[17]. This condition is mostly met in the observed dynamics and will be discussed
after the following data analysis, at the end of this Section.

Different spatially homogeneous spin profiles were prepared, using the scheme
presented in 4, without local imprint. The different initial conditions (IC) lie on the
equator of the spin–nematic sphere, meaning they feature Fz = 0 and Q0 = 0. They
only differ in the spin length F⊥, depending solely on the spinor phase 15, which
is controlled by the holding time Thold (see Fig. 9a). Their time evolution under
different qexp was tracked for ∼ 0.5 to 0.7s seconds.

For each setting (combination of IC and qexp), FxFy – and Fz –readout were
performed subsequently. The evolution times were measured interleaved, meaning
for each evolution time the settings were scanned through, before moving on to the
next evolution time. The density profiles for different evolution times (averaged
over all settings) and the total atom number in the selected region are shown in
Fig. 13. The fluctuation in the total atom number is due to fluctuations in laser
power during the measurement period (∼ 1 day). Another reason may be sloshing
of the condensate, as the fluctuation is on the order of the trap frequency in the
x–direction. Note that the density profile is relatively rough, that is, it features
ripples on the order of the spin healing length.
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Figure 13: Left: Density profiles for different evolution times t, averaged over all
settings. The red lines mark the region selected for further analysis. Right: total
atom number as a function of evolution time t.

The data for three chosen settings is presented in Fig. 14. Each row shows
the temporal evolution of the F⊥, Q0 and Fz profiles (left to right) for one setting,
averaged over ∼12 realizations. Despite different IC’s, each row shows a different
qexp. The data is binned with a relatively large bin size of 9 pixels (≈ 4µm) to
minimize noise, especially since local cuts are presented, and no sharper features
than that are observed.
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Especially in the upper two panels, one can see in F⊥ and Q0 (left and mid-
dle), that no strong spatial structure is developing, except on the very edge of the
condensate. The spin profile remains relatively flat and shows a global oscillation.
One exception is a small dip in the spin length building up, especially for the latest
evolution times (top left panel in Fig. 14). The position coincides with a small
density peak (see13), which may be the reason for this deviation. The lower panel
shows a stronger spatial dependence. This is because here, a spatial crossing of
the separatrix is happening. As c̃1 depends on the density, which is itself spatially
dependent, the shape of the phase space in the LDA also varies spatially. Thus, the
same spin state can lie on a trapped trajectory in the trap center, while experiencing
a free–running time evolution on the edge. This could be seen even more clearly in
the Larmor phase profile featuring two π–jumps at around 0.4s (as the spin direction
in the free–running region flips) for the third setting in Fig. 14, which was observed
but is not shown here, since the focus will be set on the spin dynamics in the trap
center.

The right panel shows a build–up of a negative expectation value of Fz. This
effect depends on qexp, as the figure suggests, and is not fully understood. One
possible explanation is that the atoms in the side modes experience a force due to
a slight inhomogeneity in the offset B–field. It might also be related to demixing
effects. Note that the side mode population is directly linked to Q0, being maximal
for Q0 = −1 and minimal for Q0 = 1, and that changes in Fz are especially strong
in the upper panel, where also the side mode population is large. Another observed
feature is that the negative Fz seems to be “seeded” at two positions (∼ 80 and
∼ 160µm). This is even more prominent in the free–running trajectories presented
in Appendix B.
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Figure 14: Each plot shows the time evolution of measured spin observables, with
space on the x–axis and evolution time on the y–axis (increasing from bottom to
top), averaged over ∼12 realizations. The three columns show F⊥, Q0 and Fz (left
to right). Each row shows the time evolution of one specific initial condition (IC),
for one specific qexp, respectively (denoted by q in the captions). The different IC’s
are spatially flat and lie on the equator of the spin–nematic sphere, meaning they
feature Fz = 0 and Q0 = 0. They only differ in the spin length F⊥. The dashed
perpendicular lines in the F⊥ and Q0 plots indicate cuts at the position xcut. They
allow to read off the oscillation and the IC more easily (see Fig. 15).

Cuts in the center of the spatial F⊥– and Q0– profiles are presented in Fig.
15. They allow to read off the initial condition more easily than the full spatial
profiles (Fig. 14). The rows refer to the same qexp as in Fig. 14, respectively. The
right panel shows the two oscillations in a F⊥–Q0–diagram, a projection of the spin–
nematic sphere on the F⊥–Q0–plane. It visualizes how the system follows the known
trajectories of the SMA (compare Fig. 2). A dampened sine curve is fitted to Q0(t)
with the functional form

Q0(t) = Ae−kt sin(2π(ft+ d)) +Qstable, fit
0 , (36)

where A is the amplitude, k is a damping factor, f is the oscillation frequency, d is
a phase shift, and Qstable, fit

0 is the offset of the oscillation. Although, the recorded
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oscillations do not show a damping behavior on the timescale of this measurement,
the damping factor is still kept to assure accurate estimation of the oscillation offset
and frequency.

The three measurement settings presented were selected, because they each fulfill
two advantageous criteria for a determination of qeff and c̃1: One being that they
show trapped trajectories, so that theQ0–offset (Q

stable, fit
0 ) directly gives the position

of the stable point, and thus qeff/c̃1 via eq.24:(
qeff
|c̃1|

)meas

= 2 ·Qstable, fit
0 , with the error ∆

(
qeff
|c̃1|

)meas

= 2∆Qstable, fit
0 . (37)

Here, “meas” in the superscript indicates, that this is now a measured quantity.
The error ∆Qstable, fit

0 is given by the 1σ confidence interval of the fit. The resulting
values are presented in in the left panel of Fig. 16. Note, that Furthermore, the IC
does not lie too close to the stable point, so that the oscillation amplitude is large
enough to reliably obtain a frequency, but also not too close to the separatrix, where
the oscillation deviates strongly from the sinusoidal shape, and the frequency is very
sensitive to qeff/c̃1 and the IC. The sensitivity to the IC is seen in figure 3 (left panel),
as the frequency freatures a sharp dip where the IC crosses the seperatrix. The
sensitivity to qeff/c̃1 is due to the shift of this dip. The Spinor phase IC is calculated
from the measured F⊥ IC using eq. (15) as

ϕIC
S = cos−1(F IC

⊥ ), with the error ∆ϕIC
S =

1√
1− F 2

⊥
·∆(F IC

⊥ ). (38)

The error in F⊥ is the standard deviation of the different realizations.
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Figure 15: Left and middle: Cuts through the time evolution of the measured F⊥
and Q0 profiles at a single spatial position xcut ±∆x with (∆x ≈ 4µm given by the
bin size). The black line in each plot represents a fit function. The functional shape
of the fit function for Q0(t) is given by 36. The fit to F⊥ is not used for further
analysis. Each row presents one setting for qexp (denoted by q in the labels). The
right panel shows the trajectory on a projection of the spin–nematic sphere on the
F⊥–Q0–plane. Error bars indicate the standard deviation of the single realizations.

For each of the three settings, a simulation of (18) and (19) is performed for
the given ratio (qeff/c̃1)meas and ϕIC

S , to obtain the expected oscillation frequency
f sim in units of c̃1. The error of f sim is found by running the simulation for all nine
possible combinations of

{
(qeff/c̃1)meas, (qeff/c̃1)meas±∆(qeff/c̃1)meas

}
and

{
ϕIC
S , ϕ

IC
S ±ϕIC

S

}
and choosing the largest/lowest outcome as the upper/lower bound f sim, upper and
f sim, lower.

The estimated absolute value of c̃1 in the experiment is then calculated in units
of Hz as

|c̃ est
1 |[Hz] = f [Hz]

f sim[c̃1]
. (39)

The asymmetrical error of f sim is propagated to c̃ est
1 via

|c̃ est, upper
1 |[Hz] = (f +∆f)[Hz]

f sim, lower[c̃1]
and |c̃ est, lower

1 |[Hz] = (f −∆f)[Hz]

f sim, upper[c̃1]
. (40)

∆f denotes the fit error of f , given by the 1σ confidence interval of the fit. It is
negligible compared to the error of f sim. The latter is significantly influenced by
both the error ∆( qeff

c̃1
)meas, which originates from ∆Qstable, fit

0 , and the error in the

initial condition ∆ϕIC
S , which is especially large for elongated spins. The described

method to determine c̃ est
1 is applied to the three measurements individually, and
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|
||
|

Figure 16: Left to right: The obtained values for (1) (qeff/|c̃1|)meas, (2) |c̃est1 | (3) qraw
and (4) qest. The red line in the rightmost plot is a linear fit, yielding a slope of
∼ 1. (qeff/|c̃1|)meas is obtained from the offset of the Q0 oscillation, |c̃est1 | is found by
comparing the observed oscillation frequency f to a simulation of the EOM in the
SMA (18,19), qraw is the product of the data in the first two panels, and qest is found
by multiplying (qeff/|c̃1|)meas with the leftmost data point in the second panel.

the results are presented in the second left panel of Fig. 16. The outcomes are
expected to be the same, and they agree within their error bounds to be roughly
|c̃ est

1 | = (1.5± 0.1)Hz. The very large error for the third setting of qexp is due to the
proximity of to the separatrix and the relatively large error in the Spinor phase IC,
partly leading to very small expected frequencies f sim in the simulation.

The estimated value for qeff in Hz is obtained by multiplying (qeff/c̃1)meas by the
previously found c̃ est

1 . Therefore, one can either use the individual results c̃ est
1 (qexp)

of the different settings or use the value for c̃ est
1 that is expected to be the most

reliable result. The first method yields qraw, presented in the third panel of Fig.
16, featuring a large error for the third qexp. The asymmetric error propagation is
carried out analogously to eq. 40.

The second method uses c̃ est
1 from the first setting for two reasons: qeff is very

small, so the trajectory is almost solely dominated by a rotation around Q0 given
by c̃1. It is reasonable to measure c̃1 in this regime. Furthermore, the F⊥ IC is not
as elongated as in the other settings, so that eq. 15 and 38 are less likely to induce
a systematic error due to some offset that should be taken into consideration (see,
e.g., Fig. 9a). The results are presented in the right panel of Fig. 16, together
with a linear fit, showing a slope of ∼ 1. This satisfies the expectation that the
experimentally set value qexp describes a shift in units of Hz with an unknown offset.

During the period of the presented experiments, SCC–spectroscopies were per-
formed, showing no significant shift of qeff. The maximum of these spectroscopies
was at qexp = 7 to qexp = 7.5 (with a step size of 0.5Hz). Using the results from the
analysis performed in this Section, this roughly corresponds to (qeff/|c̃1|)meas ≈ 0.4.
This is not a robust result but shall only serve as a broad orientation, as the spec-
troscopies were not evaluated in detail.

In addition to the three measurements presented, other combinations of qexp and
IC were also investigated: The elongated spin was found to be a globally stable state
for qexp = 6.5, as expected from the LDA. For the higher values of qexp = 7.25 and
qexp = 7.75, the reduced spin lengths exhibits free-running behavior globally. These
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measurements are shown in the Appendix B. The only instances where strong spatial
structure emerged were those situated close to the separatrix, as the density profile
became increasingly relevant for these IC’s. It is anticipated that spatial structure
will be formed in all settings within the easy–plane phase at a later point in time.
This is because the accumulated phase difference for the different positions will
eventually lead to the formation of structure. The greater the spatial dependence
of any spin observables, the less likely it is that the dynamics can still be captured
by the LDA, as the kinetic energy becomes increasingly relevant.

An indication that the simulation and the data are not compatible is the afore-
mentioned build–up of a negative Fz expectation value in the data, while the EOM
(18 and 19) strictly conserve Fz = 0 as given in the IC. Another indication that the
LDA does not fully describe the time evolution in these experiments are artefacts
like for example the small dip observed at late times in the spin length for qexp = 6.5
(upper left panel in Fig. 14). The small peak in the density at this position does not
explain this. Since the dip is quite sharp, it may be explained considering gradient
corrections to the LDA [29]. The total density profiles vary with the evolution time
due to the excitation of spatial modes in the trap, as well as fluctuations of the laser
power, that affect the total atom number over the measurement period. Both effects
distort the local density approximation, which does assume a constant density over
time at a given position. The density fluctuations at the cut position evaluated in
this experiment is on the order of 10%.

A feature that was observed but not fully understood is that the global Spinor
phase IC for one specific Thold appears to depend on qexp. This may be explained
by timing errors in the state preparation, which would be inconvenient and require
further investigation.
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6 Spin dynamics with local spinor phase rotation

The dynamics of spin profiles that feature a local rotation in the spinor phase is
studied. The preparation of the local spinor phase rotations is discussed in section
4. First, the effect of a relatively weak imprint is compared to that of the same
IC without a local imprint. The results of an experiment with a stronger imprint
are then presented. Finally, a measurement is presented that features a vortex in
space and time in the Larmor phase, and therefore might pose the possibility to
experimentally generate an instanton.

6.1 Local spin oscillation

The cosine- shaped local imprint is realized with a series of 14 positions of the
imprint with beam times between 1µs and 7µs, spaced by 0.14Mhz and an AOD
power of 0.9V. For comparison, the same measurement was made without the local
imprint. For each setting, FxFy – and Fz –readout were performed subsequently.
The evolution times were measured interleaved. The data were binned with 3 pixels
(as in all the following experiments), so that one bin corresponds to ∼ 1.3µm, which
is roughly the optical resolution of the imaging. The results are shown in Fig.
17, where the rows show F⊥, Q0 and Fz for the measurements with imprint (top
row) without imprint (middle) and the difference (bottom), respectively. For better
visibility, the latter is presented in black and white color code. In Q0, one can
see a local oscillation. The F⊥–profiles feature a local dip exhibiting an oscillation
as well; however, this oscillation is at a lower frequency than the one observed in
Q0. The measurements without the imprint show the behavior discussed in Section
5.2. Subtracting the reference without imprint allows to investigate the effect of
the imprint, especially in Q0, where the “background”–oscillation is larger. The
result in the lower middle panel shows the symmetric outward radiation of a dip,
with a velocity of roughly 200µms−1, which is a clear deviation from the LDA. It
originates at the first minimum of the Q0 oscillation at the imprint center. Another
wave seems to be emitted at the second minimum (∼ 0.4s), but this is not clearly
visible. For comparison, the spin speed of sound for a local perturbation in the
Larmor phase was measured to be 110µms−1 in [30]. The F⊥ profiles do not feature
this outward–radiation. The Fz profiles show that the local imprint delays the build–
up of negative Fz in the center. Next to the imprint position, Fz is more negative
than without imprint.

As in the previous section, cuts through the F⊥ and Q0 profiles are presented,
with a dampened sine fit, as well as a visualization of the trajectories in the F⊥–
Q0 plane (see Fig. 18). The trajectories with (green) and without imprint (blue)
show a similar offset (∼ 0.08) in Q0, which is expected in the LDA (as it does
for trapped oscillations not depend on the IC). With the imprint, the frequency of
the Q0 oscillation (f impr

Q0
= (3.00 ± 0.06)Hz) is smaller than without the imprint

(fno impr
Q0

= (3.16 ± 0.07)Hz), which is also expected from an LDA, as the imprint
locally brings the profile closer to the separatrix. The very low offset in Q0 indicates
qeff close to zero, so that the separatrix would almost touch the south pole of th
spin–nematic sphere.

Without imrpint, the oscillation frequencies in F⊥ and Q0 agree within their
error bars (given as the 1–σ confidence interval of the fit function). However, with
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Figure 17: Each plot shows the time evolution of measured spin observable with
space on the x–axis and time on the y–axis, averaged over ∼ 12 realizations. The
three columns show F⊥, Q0 and Fz (left to right). Top: the IC features a local spinor
phase rotation. Middle: no local modulation. Bottom: difference between the two
upper rows. The dashed perpendicular lines in the F⊥ and Q0 plots indicate cuts at
one spatial position (see Fig. 18).

the imprint, the frequencies in F⊥ (f impr
F⊥ = (2.1± 0.2)Hz) and Q0 (f impr

Q0
= (3.00±

0.06)Hz) do not agree. This is not fully understood. One possible explanation could
be changes in the total density. The total atom number as a function of evolution
time looks very similar to Fig. 13 (right), which shows fluctuations roughly on the
2Hz frequency that is also seen in F⊥. The density oscillation changes c̃1 and is
superimposed with the spin mixing dynamics. In F⊥ this superposition is expected
to be seen more pronounced, since the oscillation amplitude in the chosen setting
for small qeff is much smaller than in Q0. It could also be due to effects of the kinetic
energy, showing a deviation from the LDA. To support this, the density effect would
have to be ruled out.

Due to the stray light problem for IC’s with imprint, the IC in the spinor phase
can not be measured reliably, and the observed trajectory is thus not quantitatively
compared to a simulation of the LDA. Note also that the error bars for the oscilla-
tion with imprint are much larger, mostly due to the noisy preparation of the IC,
but also due to the stronger proximity to the separatrix. The result of this anal-
ysis is that the time evolution of a profile with a relatively small imprint can still
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Figure 18: Left and middle: Cuts through the time evolution of the measured F⊥ and
Q0 profiles at the center of the imprint. The blue data points refer to the reference
measurement without local imprint, the green points refer to the measurement with
the imprint. The black line in each plot represents a fit function, which is for Q0(t)
given by eq. 36 as in the previous section, for F⊥ its the same fit function, by just
replacing Q0 with F⊥ in the variables. The right panel shows the trajectory on a
projection of the spin–nematic sphere on the F⊥–Q0–plane. Error bars indicate the
standard deviation of the single realizations.

be qualitatively understood by the LDA, but significant deviations are seen in all
measured observables.

6.2 Leaving the trapped region locally

As in the previous section, a cosine–shaped imprint is realized. In comparison to
the previously presented one, all settings vary to some extent in this measurement.
The number of imprints is reduced to 10 (was 14), which allows a shorter holding
time Thold (is reduced from 500.5µsto270.021µs). The idea behind this is that shorter
holding times might reduce noise in the IC. The shortest pulses used previously were
below 2µs and therefore too short for an imprint anyway. The horizontal spacing
was somewhat enhanced (0.1MHz to 0.15MHz), to allow a larger imprint using fewer
pulses. Also, qeff might be somewhat different. The oscillation in the background
of Q0 allows a very crude estimate of ∼ 0.4c̃1 at the edge (maxima and minima in
Q0 are read from the color scale to be approximately -0.3 and 0.7, so the offset is
around 0.2), based on eq. 37).

The main difference in the IC is that the background spin length is shorter (due
to different Thold) and the imprint is deeper. The former causes a larger background
oscillation, the latter causes the system to locally (at the imprint position) leave the
trapped region on the spin–nematic sphere. The spatially resolved time evolution of
F⊥, Q0, ϕL and Fz is presented in Fig. 19. |⟨F⊥⟩| (upper left) is the absolute value
of the mean complex valued F⊥ = Fx + iFy over (∼ 12) realizations. Since a global
Larmor phase is randomly given in the single realizations due to fluctuations of the
offset B field, the single realizations are rotated onto each other on the left edge of
the region of interest, and then averaged. Otherwise, they would average to zero.
The Larmor phase (lower left) is the Larmor phase of the mean ⟨F⊥⟩, as one can see
on the left edge it is set to zero. Therefore, it is the Larmor phase in the rotating
frame of the Larmor frequency at the left edge. Q0 and Fz are extracted from the
Fz readout that is performed interleaved, and also averaged over ∼ 12 realizations.
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Figure 19: Each panel shows the time evolution of measured spin observable with
space on the x–axis and time on the y–axis, averaged over ∼12 realizations. |⟨F⊥⟩|
and ϕL (upper and lower left) are absolute value and angle of the averaged complex
valued transveras spin ⟨F⊥⟩ = ⟨|F⊥|eiϕL⟩. The initial condition in |⟨F⊥⟩| is not
reliable, as it is strongly influenced by stray light. Upper and lower right show Q0

and Fz. The dashed black lines are a guide for the eye for comparing the four plots.

Following the perpendicular dashed line, one can see that |F⊥| goes to zero at
around 0.4s and increases again afterwards. The Larmor phase shows that this
increase of spin length is into the opposite direction, as there is a (π–) jump. On
the left and right of the dashed line, the spin remains zero for some time, until the
two dips converge and collide at around 0.6s. After that, the F⊥ profile, as well as
the Larmor phase, are more homogeneous again. Note that the “jump” from −π
to π (black to white) at very late times in the Larmor phase is not a real phase
jump, as the values are continuously connected, but strongly distinguished by the
color scale. Overall, one can see that the locally free–running trajectory leads to
the build–up of a small domain with opposite spin direction encapsulated by the
two dips (domain walls), that eventually collide and close this domain again. This
domain can be nicely seen in the Larmor phase (bright region in the center). The
LDA helps to understand the initial dynamics, but as the time evolution goes on,
sharp features emerge, and kinetic energy strongly affects the dynamic behavior.

Fz shows a strong response to the imprint. In contrast to the previously observed
broad build–up of a negative expectation value, here we locally see a positive Fz
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building up after around 0.4s. Note that at ∼0.4s, around the imprint position the
side mode population is very low (see large Q0) so that Fz naturally can not show
large expectation values. Further away from the imprint position, the background
tends towards negative Fz. Especially on the left this is very pronounced, with values
reaching Fz ≈ −0.3 at around 0.6s. Interestingly, the broad peak at the imprint
position seems to split up into a pair of a peak (left) and a dip (right) propagating
outwards. This splitting coincides with the collision of the domain walls in F⊥.

Q0 shows the most oscillatory behaviour of measured observables. On the edge,
one can see a rather undisturbed background oscillation. In the center, one sees
an oscillation as well. The frequency is lower than on the edge, and goes towards
quite large Q0. Both indicates that the state does locally move on a free–running
trajectory, which is still close to the separatrix an thus features low frequency and
large amplitude. Neither the strong response in Fz nor the local change in spin–
orientation (F⊥ and ϕL) are visible in Q0. The latter is because a trapped and
free–running trajectory can look very similar in Q0. At around 0.6s, the oscillation
on the edge and at the center are just out of phase. Simultaneously, the collision of
the two kinks in F⊥ ocuurs. It looks like at this point, the spin–vector does locally
change the transversal spin orientation by moving across the south pole of the spin–
nematic sphere. Note, however, that since Fz ̸= 0, the state can not be represented
on the surface of the spin–nematic sphere, and this is just a qualitative discussion
of the measurement results. This experiment shows how, if the system locally sits
on a free–running trajectory, clear deviations from the LDA are visible. It could be
very interesting to look at the mean–field energy functional to analyse how energy
is moving in space and transferred between different degrees of freedom in time.

6.3 Towards creating a vortex in the Larmor phase

This measurement is meant to show that the local spinor phase imprint together
with a B–field gradient might offer a possibility to deterministically generate a vortex
in the Larmor phase. The conceptual idea is as follows (starting with a flat Larmor
phase profile):

• Left edge: Larmor and spinor phase stay at rest (in the rotating frame of the
Larmor phase).

• Right edge: The B–field gradient induces a 2π–winding of the Larmor phase
relatively to the left edge. The spinor phase does not change.

• Center: The B–field gradient leads to a winding of 1π in the Larmor phase.
Additionally, the spinor phase imprint leads to an evolution of 1π in the spinor
phase, as the imprint locally puts the system on a free–running trajectory on
the spin–nematic sphere in the LDA.

⇒ The left and the right edge differ by 2π in the Larmor phase (same spin
orientation), while the rotation of π in both the Larmor and spinor phase at
the center also results in the same spin orientation as in the beginning.

While the time evolution of the Larmor phase is determined by the B–field, the
evolution of the spinor phase at the imprint position is susceptible to the density
(via c̃1), qeff, the imprint depth (ϕIC

S ) and most probably the imprint width and shape.
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Figure 20: Left: Average |F⊥| profiles over∼ 12 realizations for evolution times up to
1s. The single realizations are averaged after taking the absolute value individually.
Right: Time evolution of the Larmor phase. It is obtained by rotating the single
realizations in F⊥ onto another before averaging and taking the angle of the resulting
mean. The black circle indicates a winding of 2π along its path. The horizontal cuts
are presented in Fig. 21 in more detail.

The two timescales have to be matched, posing an experimental challenge, as both
are not highly controllable. The dynamics between the three orientation points (left
edge, center, and right edge) is to be studied, as well as the time evolution after the
vortex is accomplished.

The presented measurement features a cosine-shaped imprint, using 14 imprint
positions spaced by 0.14MHz, with beam times τB between 1µs and 7µs. The IC is
comparable to the previous section although the background spin is more elongated
(∼ 1), and the imprint is somewhat less deep. As before, stray light prevents an
exact knowledge of the IC. Also, qeff might be somewhat different, the relatively
small background oscillation at large F⊥ indicates qeff close to zero. Q0 and Fz

were not measured in this experiment, as it was chronologically the first one to be
performed, and the Fz–readout was added to the experiments only later. The main
difference to the experiment in the previous section is a small B–field gradient over
the condensate. It is on the order of 0.01‰(∼ 10−5G) over 100µm, and thus does
not significantly affect the second–order Zeeman shift, but it leads to the continuous
build–up of a Larmor phase gradient. This phase gradient is associated with a
different orientation of the transverse spin F⊥ (see eq. 14), and also with a velocity
of the side modes in opposite directions. Fig. 20 shows the time evolution of ⟨|F⊥|⟩
and ϕL. The former shows a qualitatively comparable behavior to the |⟨F⊥⟩| profile
in the last section (see Fig. 19). Locally, the spin length goes to zero at around
0.25s. In this experiment, it does not return as clearly and the two dips on the left
and right are not as prominent, as observed in Section 6.2. This is followed by a
sharp dip at the imprint position at around 0.6s. After that, the profile is relatively
flat again, while it seems like two broad dips radiate outward.

Note that ⟨|F⊥|⟩ is determined differently than in the previous section. Rather
than averaging the complex –valued data and then taking the absolute, here ⟨|F⊥|⟩
is calculated by first taking the absolute of the single realizations and then averag-
ing the absolute values. The reason for this is that the former method would lead
to |⟨F⊥(x)⟩| = 0 for a large region in the center due to differing spin directions in
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Figure 21: Left: Averaged F⊥ profiles in spin space. The color code indicates the
spatial extension (see right) with dark red being the left and deep blue being the
right edge. Right: Spin length |F⊥| (blue) and Larmor phase ϕL (green) of chosen
single realizations. Bold blue and green curves belong to the same realization, and
are chosen, as they mostly resemble the mean shown left. Light curves show other
realizations at the same time. The top panel left and right shows the IC, where the
spin length is somewhat overestimated due to stray light.

the single realizations for most of the times after ∼ 0.7s (a comparison is shown in
Appendix C). After the sharp dip in the spin length at 0.6s, the single realizations
become very different, and thus hard to average. For the Larmor phase, the method
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from last section of first rotating the single realizations onto another, and then aver-
aging was adopted, since otherwise it is impossible to obtain a reasonable signal. As
large jumps in the Larmor phase (together with dips in |F⊥|) do in single realizations
often go in different directions, even though the complex F⊥ almost looks the same,
it cannot be taken from single realizations and then averaged, as |F⊥|. The Larmor
phase in the right panel of Fig. 20 shows a 2π–winding around the black circle.

For a better visual understanding of this observed vortex in the Larmor phase,
another representation of the same data set is given in Fig. 21. The left panel
shows the averaged complex valued F⊥ for different selected times (indicated by
horizontal lines in Fig. 20), the spatial dimension is represented by the different
colors. The different realizations are rotated onto another, so that the left edge
corresponds to ϕL = 0. One can see the build–up of the Larmor phase gradient in
this representation, as the blue end shows a rotation around the center. The imprint
allows the state to locally leave the trapped region (t = 0.47), as the profile locally
crosses the center of the plane. The combination of both effects allows to reach a
state at t = 0.71s, where the F⊥ has fulfilled a full rotation, however, it does not
enclose the center.

The right panel of Fig. 21 depicts the |F⊥| and ϕL profiles of some chosen single
realizations. One realization that mostly resembles the mean shown on the left is
always bold. The Larmor phase has been unwrapped along the spatial dimension
for this representation, that is, for any jumps larger than ±π, multiples of ±2π
are added, so that the phase shows a smooth behavior, and the definition range
is no longer limited to [−π, π]. The very upper plot shows the IC, but can only
be interpreted qualitatively, as stray light significantly affects the F⊥ readout. The
second time step shows the continuous build–up of the Larmor phase gradient. At
the time t = 0.47s, where the imprint has led to a crossing of the center of the
plane, the Larmor phase shows two jumps that are very different for different single
realizations. Physically there is not a large difference, since each realization might
cross the center sightly different, therefore leading to a very different behavior of the
Larmor phase. Note that the different values of the Larmor phase on the right of
these jumps only differ in ±2π. At t = 0.59 s, where the sharp dip in |F⊥| appears,
the Larmor phase has a ±π–jump. The sign of the jump does not have a physical
meaning here either, since it just depends on the exact position of how the system
crosses the center and is therefore different in the single realizations. Just after the
jump, the difference in +π and −π becomes relevant, since both |F⊥| and ϕL tend
to flatten again. Here, interestingly, it is observed that the −π–jump was preferred.
This seems somewhat intuitive, as due to the gradient that is continuously building
up during the time evolution, the system can much easier “reconnect” the dip in this
direction. The dip at t = 0.59second is very sharp (∼ 10µm), goes to |F⊥| = 0, and
connects two points with opposite transvrsal spin direction. As the dip disperses,
the spin at the center has to take a certain orientation again. As the domains to
the left and right of the dip rotate with respect to each other, only one choice of
orientation at the center actually decreases the spatial gradient in F⊥. At 0.71s, one
can clearly see, that while the Larmor phase at the right edge of the condensate has
performed one full rotation, while its value at that position is not 2π, but 0. This is
not an artifact as in the jumps observed at earlier times (t = 0.47s and t = 0.59s),
as |F⊥| is not close to zero here, and the Larmor phase does not show any jumps.
This effect is seen as a vortex in the Larmor phase in space and time.
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Recalling the definition of the winding number 25, it is clear that in the experi-
ment this exact definition cannot hold, as there are no periodic boundary conditions.
However, for a certain spatial region, a winding number can be defined as

Qexp
w =

1

2π

∫ x2

x1

dx
∂ϕL

∂x
= ϕunwrapped

L (x2)− ϕunwrapped
L (x1), (41)

with ϕL(x1) = 0 it is given as Qexp
w = ϕunwrapped

L (x2) and can take continuous values.
It is for the same region as in Fig. 21 (x1 ≈ 70µm, x2 ≈ 190µm) depicted in Fig. 22.
The Figure shows the winding number of the single realizations as well as a majority
vote. One can see that initially it is rising due to the B field gradient. As the broad
dip in |F⊥| reaches zero, the winding number starts to jump up and down, differently
in each single realization. As long as the |F⊥| profiles feature a dip close to zero, the
winding number is not a particularly meaningful value, as even some noise might
induce a difference of ±1. It is however meaningful as soon as F⊥(x) does not get
close to zero. At t ≈ 0.7s, the winding number for most of the realizations is 0,
concomitant with a spin length above 0.5 for most of the realizations, meaning a
jump has occurred. Without the imprint, the system would have collected a winding
number of 1 at this point. At t ≥ 0.8s, this trend of preferring the lower winding
number is not visible anymore and the majority vote jumps up and down again, as
also the single realizations don’t show a trend. The initially very linear increase of
the winding number (modulo 1), also shows some deviation for later times. This
can be caused by both, a change in the B field gradient, and the stronger influence
of the imprint at the edge of the region of interest for later times.

To conclude, the winding number does not show one clean jump, which would
have been the most clear signal indicating an instanton event. It shows several
jumps and does not have a clear trend after t ≈ 0.8s.

Even though in this experiment, looking at the winding number does not lead to
a conclusive result, it offers a convenient way of analyzing the data, as it does not
rely on averaging and furthermore avoids looking at all the single realizations.

Note, this measurement was not reproduced. This is mostly due to difficulties
reproducing the exact B-field gradient. Furthermore, after the sharp dip at t = 0.59s,
the single realizations differ strongly, and it becomes increasingly difficult at later
times to average the data in a meaningful way. As one can see in Fig. 20, shortly
after t = 0.71s, the mean Larmor phase behaves very differently for each time step,
and it seems somewhat arbitrary to draw the circle in a way that it features a
winding of 2π along its path. This is partly why Fig. 21 is presented, with the
left panel showing the average over all realizations, to stress that the vortex was
actually observed, undermined by the single realizations in the right panel. The
reason why after t = 0.59s the single realizations differ strongly is probably because
the exact configuration at this point is very crucial for the further time evolution of
the state. The role of the B–field gradient is also not fully understood yet. Since
it is generated with a coil that is not actively power–stabilized, slight changes in
this gradient might also, especially after t = 0.59s, lead to a very different time
evolution of the state. Shot–to–shot noise in the IC is also a possible explanation
for this problem. As the complex data of the single realizations have to be rotated
before averaging, this poses another possibility to “manipulate” the data, since the
outcome after averaging depends on the position, where the data are rotated onto
another.
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Figure 22: Winding number as a function of evolution time. It is defined as the un-
wrapped Larmor phase at the right edge of the region of interest, while the Larmor
phase at the left edge is set to zero. The grey circles represent the single realiza-
tions, and the black solid line shows the majority of the single realizations. Initially
only the build–up of a Larmor phase gradient can be seen, as the winding num-
ber continuously increases. As F⊥ crosses the center, the Larmor phase jumps in
most realizations. Around 0.7s, most realizations feature the lower winding number.
Later the signal is very noisy.

As Fz and Q0 were not measured in this experiment, it also remains open what
is happening in these observables. The results of Section 6.2 might give an indica-
tion, since |F⊥| shows a comparable behavior there. An open question is also the
comparability to the vortices observed in [13], since there the vortices are triggered
by rogue–wave like events in the phase velocities in the single components. There
have also been unpublished results with comparable IC’s as in this experiment by
the theory side, showing comparable results.
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7 Conclusion and outlook

In the course of this thesis, different experiments were performed with a quasi-one-
dimensional spinor BEC of 87Rb atoms.

A scheme for the preparation of states that feature a local rotation of the spinor
phase has been developed and tested in the experiments. The dependence of the
spin length on the holding time Thold shows that the relative phases of the mw pulses
change with their temporal separation, giving rise to a very fast oscillation. This
oscillation of roughly 15MHz comes from the frequency that is added to the signal
of the mw generator in the I/Q–mixer.

An analysis of the imprint shape employing three subsequent beams in vertical
direction with the same horizonatal position shows good agreement with a Gaussian
shape in the modulated spinor phase. The imprint width is σB = (5.7 ± 0.7)µm,
and the horizontal jitter is σpos = 0.7µm. Fluctuations in the depth of the imprint
are found to be on the order of 0.1π. The density profiles show over densities at the
beam position for all beam powers, reaching up to ∼ 10% for the strongest imprint
(powAOD = 1.5V, τB = 12µs). For the large over densities a splitting of the peak
in the density is observed. Both density effects (over density and splitting) lead to a
damping of the imprint depth as a function of beam time τB. Analyzing the latter,
it is concluded that a time of roughly 2.5µs is needed for the sound wave in the AOD
to build up. The most linear behavior of imprint depth vs. beam time was seen for
AOD powers of 1V to 1.3V. The local imprint was also found to cause stray light
on the camera in the initial condition, which can be minimized for horizontal beam
positions using values of fAOD, h ≤ 97.6MHz. The density effects can be minimized
by optimizing the wavelength of the local imprint laser. An improvement to the
analysis could be to perform the experiments at a different background spin length,
to be more sensitive to small imprints, and to distinguish actual fluctuations in the
imprint depth from fluctuations in (insensitivities to) the background spinor phase.

As the Fz–redout is not affected by stray light, it is concluded from other exper-
iments that the imprint does not have a significant effect on Fz and Q0. It also does
not affect the Larmor phase.

Spatially flat spin profiles were prepared and their time evolution under different
second–order Zeeman shifts qeff was investigated. The profiles qualitatively show
to locally follow the trajectories predicted by the single–mode approximation, mo-
tivating the applicability of the local density approximation. Both trapped and
free–running trajectories were observed, as well as configurations, where the system
divides into trapped and free–running regions, depending on the local density. The
offset of trapped oscillations of Q0(t) in the trap center enabled us to determine the
relative position in the easy–plane. A comparison of the observed frequency with a
simulation of the spin equations of motion in the single–mode approximation reveals
the second–order Zeeman shift qeff, and the local value for an effective spin-spin in-
teraction strength (c̃1)

est. The latter is the product of an effective one-dimensional
local density n1d and the effective one–dimensional spin coupling constant c1d1 . Al-
though it is not clear what n1d and c1d1 exactly are, the most relevant parameter
in the experiment is in our case the combined value c̃1. For the estimated spin
interaction (c̃1)

est, consistent results of |c̃ est
1 | = (1.5 ± 0.1)Hz are obtained. The

obtained values for the second–order Zeeman shift qest confirm the expected lin-
ear dependency on the value that is set in the control of the experiment, with a
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slope of (∆qest)/(∆qexp) = 1.07 ± 0.07. Note that even though these results are
self–consistent, there may be systematic errors, as the method is built on the LDA.

This analysis could be further improved by not only comparing the results in
Q0 with the simulation, but fitting the exact functional shape to the observed tra-
jectories in F⊥ and Q0. The method presented in this thesis uses sinusoidal fits
that do only in some configurations resemble the trajectories that are in general
described by elliptical sine functions [14]. The state preparation used in these ex-
periments showed an unexplained dependence of the spinor phase initial condition
on the programmed value for the second–order Zeeman shift qexp.

The analysis of spin dynamics featuring the local spinor phase rotation in the
initial condition focused on two scenarios. The first one being a state that was
globally and locally on a trapped trajectory, with the same spin orientation (slight
local imprint). This leads to an evolution that still resembles the local density
approximation but showed some differences, as wave packets in Q0 seem to radiate
outward from the locally different oscillation. A slight effect of the imprint on the
evolution of the vertical spin Fz is observed. An anomalous low frequency oscillation
in F⊥ at the imprint position remains unexplained. Here, numerical simulations
could provide a good sanity check, even on a mean–field level.

A complete deviation from the local density approximation is observed for an
initial condition, that is globally trapped but locally sits on a free–running trajectory.
Here, a spin domain of opposite spin direction is formed temporarily. This effect is
accompanied by strong excitations in the vertical spin.

Finally, a measurement is presented that aims towards the deterministic creation
of a vortex in the Larmor phase. The vortex can be observed in the Larmor phase
when choosing the right path through its spatio–temporal evolution. Obtaining a
decent signal for the Larmor phase is challenging in the first place, as the complex
valued F⊥ in the single realizations shows very large differences after roughly 0.6s.
However, a Larmor phase vortex is definitely observed in some single realizations.
Probably the dynamics is very susceptible to the exact interplay of Larmor and
spinor phase, and the creation of the vortex might pose a fine-tuning problem of
the imprint, qeff and the B–field gradient. The role of the latter is not yet fully
understood. An idea for future measurements could be to initialize the system with
a combination of spin wave and spinor phase imprint.

To build on the results of Section 5, investigating the effect of a spin wave in the
initial condition without local imprint could help understanding the transition from
the local density approximation to more complex dynamical behavior, and might
also shed light on the role of the Larmor phase gradient on the creation of the vortex.

The connection to the instantons observed in [13] remains an open question.
In the post–quench dynamics observed in that study, the vortices are preceded by
rogue wave like events in the individual phase velocities. Realizing an analog initial
condition in the experiment could also be a future project.
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[30] Maximilian Prüfer et al. “Condensation and thermalization of an easy-plane
ferromagnet in a spinor Bose gas”. en. In: Nature Physics 18.12 (Dec. 2022).
Publisher: Nature Publishing Group, pp. 1459–1463. issn: 1745-2481. doi:
10.1038/s41567-022-01779-6. url: https://www.nature.com/articles/
s41567-022-01779-6 (visited on 06/06/2024).

[31] Lawrence F Shampine and Mark W Reichelt. “The matlab ode suite”. In:
SIAM journal on scientific computing 18.1 (1997), pp. 1–22.

48

https://doi.org/10.1103/PhysRevLett.123.063603
https://link.aps.org/doi/10.1103/PhysRevLett.123.063603
https://link.aps.org/doi/10.1103/PhysRevLett.123.063603
https://doi.org/10.1103/PhysRevA.92.052501
https://link.aps.org/doi/10.1103/PhysRevA.92.052501
https://link.aps.org/doi/10.1103/PhysRevA.92.052501
https://doi.org/10.1103/PhysRevA.95.059901
http://link.aps.org/doi/10.1103/PhysRevA.95.059901
http://link.aps.org/doi/10.1103/PhysRevA.95.059901
https://doi.org/10.1103/PhysRevA.93.022507
https://link.aps.org/doi/10.1103/PhysRevA.93.022507
https://link.aps.org/doi/10.1103/PhysRevA.93.022507
https://doi.org/10.11588/heidok.00027925
https://archiv.ub.uni-heidelberg.de/volltextserver/27925/
https://archiv.ub.uni-heidelberg.de/volltextserver/27925/
https://doi.org/10.1103/physreva.106.053309
http://dx.doi.org/10.1103/PhysRevA.106.053309
http://dx.doi.org/10.1103/PhysRevA.106.053309
https://doi.org/10.1038/s41567-022-01779-6
https://www.nature.com/articles/s41567-022-01779-6
https://www.nature.com/articles/s41567-022-01779-6


A SIMULATION SMA

A Simulation SMA

To gain a better insight into the spin dynamics on the spin–nematic sphere, some
simulated trajectories are presented here, together with the time resolvedQ0–oscillation
and the sinusoidal fit (see Fig. 23). Shown are three trajectories starting at an elon-
gated spin (Sx = 1) corresponding to ϕIC

s = 0, for different values of q/nc1. The EOM
18 and 19 are solved with an ODE solver [31].

Figure 23: Upper panel: trajectories on the spin–nematic sphere for different q.
The IC is always chosen to be ϕIC

s = 0 (indicated by the red dot) and nc1 = −1.
Lower panel: Q0(t) (black) for the three trajectories above. In red, the sinusoidal fit
function Qfit, sim

0 (t) = A · sin (2π(ft+ c))+d is shown. One can see, that trajectories
close to the seraratrix deviate from the sinusoidal shape. The frequency is obtained
from the sine fit using a very narrow window for f, determined by the temporal
spacing of the minima and maxima in Q0(t). The offset is the maximal value minus
the minimal value of the simulated trajectory, and the amplitude is the maximal
value minus the offset. This method allows to circumvent the systematic errors
in the fit close to the separatrix, especially for the offset. The numbers for q are
rounded to the first decimal. A state starting at exactly ϕIC

s = 0 lies exactly on
the separatrix for q = −1nc1, so that it would never reach the north pole of the
spin–nematic sphere.
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Figure 24: Frequency, amplitude and offset (left to right) for the same IC (ϕIC
s = 0),

and different q/nc1. The frequency goes down as the state changes from trapped (low
q) to free–running (large q). For large q, the frequency is approximately given as
f = 2q. The offset shows the linear behavior derived in equation 24 for the stable
point in Q0. This linear behaviour is given for all trapped oscillations independent
of q/nc1 and ϕIC

s .

B Additional plots to Section 5

Fig. 25 shows additional plots capturing the evolution of different spatially flat spin
profiles under different values for the second–order Zeeman shift qexp. In Section 5,
three trapped trajectories are analyzed. In addition to these, a trajectory very close
to the stable point is seen (upper panel), and different free–running trajectories
(lower three panels). None of the measurements shows an excitation of spatial
modes.

Fig. 26 shows cuts through the oscillations and depicts the trajectory on the F⊥–
q0–plane. Note that free–running trajectories cannot be identified by negative F⊥
in the experiment, as it is per definition positive. An indication for a free–running
trajectory is that F⊥(t) goes (almost) to zero. The quickest way to identify a free–
running trajectory is to look at the spatial dependence of the oscillation frequency.
As the density is higher in the center (and therefore nc1), free–running trajectories
feature a slower oscillation in the center than towards the edge. Trapped oscillations
show the opposite behavior. If a state locally changes from trapped to free–running,
the larmor phase helps to identify different spin orientations. Note that for states
featuring a larmor phase gradient, the sign of this gradient does not change for free
running trajectories, as one could naively expect.
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Figure 25: Each plot shows the time evolution of measured spin observables, with
space on the x–axis and evolution time on the y–axis, averaged over ∼12 realizations.
The three columns show F⊥, Q0 and Fz (left to right). Each row shows the time
evolution of one specific initial condition, for one specific qexp, respectively (denoted
by q in the captions).
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Figure 26: Left and middle: Cuts through the time evolution of the measured F⊥
and Q0 profiles at a single spatial position xcut ± ∆x with (∆x ≈ 4µm given by
the bin size). The black line in each plot represents a fit function. The functional
shape of the fit function for Q0(t) is given by 36. The fit to F⊥ is not used. Each
row presents one setting for qexp (denoted by q in the labels). The right panel
shows the trajectory on a projection of the spin–nematic sphere on the F⊥–Q0–
plane. Error bars indicate the standard deviation of the single realizations. Upper
most panel shows the trajectory of a state of the stable point. All other panels show
free–running oscillations. Experimental measurement data are always in the right
quadrants of the F⊥–Q0–plane, as F⊥ is always positive. That makes it harder to
identify free–running trajectories.
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C Additional plots to Section 6.3

As mentioned in section 6.3, the single realizations in this measurement differ in-
creasingly, especially after roughly 0.6s, where the sharp dip in |F⊥| occurs. ⟨|F⊥|⟩
(left) and |⟨F⊥⟩| (center) are shown in Fig. 27. The right panel shows the square
root of the variance of the single realizations in the complex F⊥.

Figure 27: Left: First taking the absolute value |F⊥| and then averaging allows to
see how elongated the spin is in average. Center: First averaging the complex valued
F⊥ and then taking the absolute value causes the the single realizations to average
to very low values after ∼ 0.59s. This region gets increasingly larger. Right: The
standard deviation of the complex single realizations clearly shows the diverging
behavior of the single realizations.
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