Internship HMF Transmitter

Kai Husmann

November 2011

Electronic Vision(s), Kirchhoff-Institut fiir Physik,
Ruprecht-Karls-Universitat Heidelberg

Internship HMF Transmitter

This internship covers the HMF Transmitter! tests. The aim of these tests was to find the
maximum data rate at which it is possible to transfer HICANN? data from one process to
another. Thereby using a shared memory area that will later be read autonomously by the
network device itself. This document shows the results of the evaluated bandwidth and
latency. Furthermore it describes the interprocess circular buffer which was programmed
within these tests.

Praktikum HMF Transmitter

Dieser Praktikumsbericht behandelt die HMF Transmitter' Tests. Ziel dieser Tests war
es die maximale Datenrate zu ermitteln, mit welcher HICANN? Daten von einem Prozess
zu einem anderen tibermittelt werden kénnen. Dabei wurde ein ,,shared memory“ Bereich
verendet welcher spater autonom von der Netzwerk Karte direkt gelesen werden soll.
Dieses Dokument liefert eine Einschéatzung iiber die erreichbare Bandbreite und Latenz.
Weiterhin beschreibt es den Interprozess-Ringpuffer (interprocess circular buffer) welcher
im Rahmen dieser Tests entwickelt wurde.

"Hybrid Multiscale Facility (HMF)
?High Input Count Analog Neural Network (HICANN)

Contents

1. Introduction
1.1. Motivation
1.2, Assignment
1.3. The simulator

2. General Design
2.1. Self-made circular buffer

3. Encountered problems and curious observations
3.1. Problems with BOOST circular buffer
3.2. Problems with the alignment00
3.3. About memory fences

4. Performed Tests
4.1. Environment
4.1.1. codebranches
4.1.2. #defineoptions
4.1.3. compileflags
4.2, Resultsand plots
4.2.1. Initialisation of the Shared-Memory Area
4.22. Onepair
4.2.3. Multiple pairs

5. Conclusion
5.1, Summary
5.2. Outlook e
5.2.1. Buffersizes
5.2.2. Buffer packet size
5.2.3. Initialisation process
5.2.4. Making a fully fledged C++class
5.2.5. RDMA
5.3. Acknowledgments oL

A. Appendix
A.1. Delivered report package
A.2. Classes and code organization
A.2.1. List of C++ Programming Language files

IT

10
10
10
10
11
14

16
16
16
17
17
17
17
18
18

A22. Listofhfiles 20

A.3. structure.h: defines 20
A4 Plotdatafiles 22
A4, init _test.dat L. 22

A42 one pairdat 23

AA43. multi pairdato 24

AL Acronyms .. o. ..o e 25
Bibliography 26

III

1. Introduction

1.1. Motivation

The “Electronic Vision(s) Group” at the Kirchhoff-Institut fiir Physik was founded in
1995. Initially research was focused on CMOS image sensors. Later, the research focused
on tactile perception and displays.

In recent years, the group started to build neuromorphic hardware. A chip-based
system called Spikey is in productive use and a successor called HICANN' [Millner
et al., 2010] is running as prototype system. To allow for larger scale neural networks
which require high connectivity, a wafer-scale system that replicates ca. 384 HICANNs
and their inter-connectivity onto a single wafer is under development.

Currently, the “Electronic Vision(s) Group” takes part at the “BrainScaleS project”
which aims at understanding function and interaction of multiple spatial and temporal
scales in brain information processing. One research task of the BrainScaleS project is
to develop a non von-Neumann HMF'

We will build a facility for the exploration of non von-Neumann comput-
ing architectures, in particular for multiscale emulations of neural systems.
The Hybrid Multiscale Facility (HMF) combines a neuromorphic comput-
ing system composed of custom designed neural circuits in microelectronics
with conventional high performance numerical computers. The neuromor-
phic system is a physical model of neural microcircuits featuring low energy
consumption per neural event, fault tolerance, scalability and the capability
to learn. Networks can be assembled from 1.6 million neurons and 0.4 billion
dynamic synapses with user configurable parameters and network architec-
tures. The merging of the two computational concepts into a hybrid system
provides a new experimental platform suited to bridge temporal scales from
milliseconds to years and at the same time to study spatial scales from the
single cell level to functional brain areas in a single experiment at speeds
far exceeding biological real-time. By virtue of the numerical computing in-
frastructure as an integral part of the HMF, the system will provide virtual
environments and generate sensory inputs as well as motor feedback in order
to realise multiscale closed-loop experiments addressing cognitive tasks. |[...]

BrainScaleS [2011]

This report is a part of the neuromorphic (non von-Neumann) hardware which is
developed within the “BrainScaleS” HMF research task. The HMF consists of two mayor

'High Input Count Analog Neural Network

parts. One part is the so called HMF Conventional Hardware (HMFConvHw) consisting
of (conventional) backbone computers on which the MappingTool |Ehrlich et al., 2010;
Wendt et al., 2010; Briderle et al., 2011] and other software runs. The other part is the
neuromorphic part (NP) consisting of the wafer-scale system: this system is made up of
several so called wafer-scale integration units (W.SI-system). The heart of each unit builds
a printed circuit board called mainPCB which forms the connection to one wafer and to
12 customizable communication subgroups. These subgroups will manage the inter-wafer
communication as well as the external connections to the backbone computers using an
FPGA. The backbone computers are equipped with RDMA capable network interface
cards (RDMA-NICs) for connection with each other and to the FPGA boards. The
Remote Direct Memory Access (RDMA) technology comes in handy here. It allows the
bundled computers to access each others RAM in a direct and cheap manner. And one
can define RAM areas which can be accessed by the RDMA-NICs as well as by distributed
software applications |OpenFabrics, 2011|. This is important for the HMFConvHw to be
able handling enough data to satisfy the NPs needs.

As there is lots of data that has to be exchanged between the HMFConvHw and the
NP, for example pulse data, as well as within the HMFConvHw the transfer rate at which
we can offer data to the RDMA-NICs is of high interest.

1.2. Assignment

The aim of the HMF Transmitter internship was to evaluate the maximum transfer rate
at which it is possible to

1. offer data (e.g. pulse data) through RAM to the RDMA-NIC
2. read data stored in RAM by the RDMA-NIC

As the RDMA-NICs were not available during this internship they have been excluded
from this evaluation. But its expected that the RAM accessed by software and RDMA-
NIC in reading and writing manner is the bottle neck. Therefore a simulation that
transfers data through a Shared-Memory Area (shamem) had to be programmed (repre-
senting a software accessing a shared memory which is also available to an RDMA-NIC).

This simulation is the HMF Transmitter. And this report describes its production as
well as its evaluation.

1.3. The simulator

The simulator consists of two independent processes transferring data from one to the
other using a Shared-Memory Area (shamem). These processes named Generator and
Receiver form — together with the Starter, which initialises the shamem and then starts a
Generator-Receiver pair — the main classes of the HMF Transmitter. Additionally there
is a shell script to start up multiple pairs/Starters to evaluate how parallel processes can
influence the overall data rate.

The results are expected to give a reasonable upper bound at which we can offer data
through RAM from a software interface to an RDMA-NIC.

2. General Design

Looking at the later use of HMF Transmitter namely providing HICANN data at high
speed to a network device through RAM, it was clear that using the C++ Programming
Language (C++) would bring best results: Apart from being widely spread, well known
and fast, C++ allows precise control about data structures and how their content is put
into RAM. This was found to be of great importance when passing data from software
to hardware.

When writing C++ code the BOOST C++ Libraries' are fairly known. They are a
collection of free open source libraries of well formed and frequently used C++ struc-
tures that aim at becoming C++ standards. Especially the BOOST interprocess library
[Boost.Interprocess, 2011| seemed to have everything one needs to create intercommu-
nicating processes. So it was decided on building the interprocess communication upon
the BOOST interprocess library (BOOST: : Interprocess).

The data should be transported through a circular buffer. It seems to be the best
structure /pattern for our purpose. There is a circular buffer structure within BOOST but
that unfortunately had problems interacting with interprocess routines. More on that in
chapter 3. Since the BOOST circular buffer was not working within our constraints next
choice was to create an interprocess functional circular buffer myself. But before the work
on the circular buffer could begin the data structures had do be defined. They can be
found in the file structure.h. The pulse data which is actually transferred is packed in a
“Matryoshka doll” style. The smallest struct is the pulse_t (timestamp and label) and a
load of these is packed into a pulse_packet_t (id, count and multiple pulses). Finally the
buffer_packet_t holds a pulse packet together with a control flag and some padding. To
avoid page alignment problems it was decided to align each buffer_packet_t at 8 KiB.
Here were some problems too, more on that again in chapter 3.

Further HMF Transmitter settings, manageable through #defines, can be reviewed
in the appendix A.3. Additionally there is an overview of the files contained within the
HMF Transmitter package in appendix A.2.

2.1. Self-made circular buffer

A circular buffer is a memory area or vector which is circled through. That means —
starting writing at 0 — we move ahead element by element and when reaching the end we
jump back to the first element (0) overwriting it. As in our case we cannot accept loss of
data we must assure that element 0 is read before the generator flips back there. And so
on. That was archived by implementing a Receiver Read-head (r-head) and a Generator

! Available at http://www.boost.org

http://www.boost.org

Write-head (g-head) and defining the circular structure such that g-head and r-head are
never touching. Therefore the buffer size must at minimum be 3 where generator and
receiver will access the circular buffer alternately. In the following ASCII example b
denotes a blank/free element, d an element containing data and ¢g and r the accordant
head’s position. If a head is followed by a ! its blocked. Each word of chars is a possible
follow up situation of the one before. But showing subsequent moves of the same head
might have been omitted.

size 2: bb +— gb — dg! — rlg! and now both block each other

size 3: bbb — gbb — ddg! — rdg! — br!g (g flips back) — g!rd (alternating
blocks)

size 5: bbbbb —+ dddgb — rddgb ...

Normally either the generator or the receiver is faster and the situation will turn into
something like this:

fast g: ... rdddg! — bbrdg — dg!rdd — dgbbr — dddg!r (only g blocks)
fast r: ... Dbbr!gb — bbrdg > bbbr!g — dgbrd — r!gbbb (only r blocks)

It is possible to program a circular buffer without this kind of gr-head structure. Then
the receiver just tests if its next element has been fully written meanwhile the generator
only tests if its next element has been read already. But that results in a less clear
situation and in respect of race conditions and other interprocess complications the strict
handling seems to be the better promise. And well since the final version not one packet
was observed to be transmitted erroneously. And that without using any memory fences
and even in a 3 weeks run (longest test performed). Furthermore the gr-head structure
allows for a better and clearer observation of the circular buffers accessed positions.

Also some words have to be said about the start setting. As the generator needs
writing first we have the possible situation of the generator filling the whole buffer before
the receiver has started, leading to a possible situation of the generator outdistancing
the receiver. This actually was an earlier bug that wasn’t easy to trigger (as normal
code uses high buffer sizes), hard to find but easy to fix. Let us finally take a look at
the start-up process and the “master-while-loop” (working loop), which are illustrated as
algorithms 1 and 2.

: shamem is initialised:

both heads stati = HEAD_INIT, both heads pos = POS_INIT = -42 < 0

2: generator (G) and receiver (R) are started (in any given order)

: they both do some further initialisation..

and R sets its position to rpos = 0 and finally its status to
rstate = HEAD_WAIT_TO_START

G waits until R leaves state HEAD_INIT:
while (r_head_p->status == HEAD_INIT) {...}

e and then puts its pos to gpos = 0, enters the master-while-loop and starts
generating

d[..dlgb..b
e G can’t pass gpos=0 a second time until the receiver has started (see algorithm 2)

Alongside R waits on G to have written its first elements
while (gpos < 1) {...}

e and then enters it’s master-while-loop (see algorithm 2) and starts to receive
rld..dlglb..b]

now both processes have entered their master-while-loop.

: NB: The heads check to wait only prior to moving ahead. So if gpos=n and rpos=n+1

G will block after having written n, remaining on n. The same accounts for R.

Algorithm 1: The start-up process

always entering loop with r-pos/g-pos = [0..BUFFER_SIZE]

write or read element on pos

check if other process stands at pos+1 and wait until it has continued

now increase own pos by one (and make sure that pos=BUFFER_SIZE>pos=0)

Algorithm 2: The master-while-loop

3. Encountered problems and curious
observations

As stated already there were some issues with the BOOST circular buffer, as well as with
BOOST and aligned structs. Also the fact that we we did not need any memory fences is
interesting.

3.1. Problems with BOOST circular buffer

Looking through the BOOST documentation I found a class “circular buffer” there. On
first sight this seemed to be the perfect code concerning the assignment. But then the
BOOST circular buffer was not aimed at interprocess assignments. Putting the circular
buffer within a Shared-Memory Area (shamem) it throws a runtime error. But to that a
solution can be found in the BOOST documentation. Search for BOOST_CB_DISABLE_DEBUG
in the circular buffer documentation [Boost. CircularBuffer, 2011]. One must disable that
debug flag to get the circular buffer to run within a shamem.

In our concern the use of the BOOST circular buffer is to simply check its size (the
amount of elements within) and decide thereafter if a new element could be retrieved
or generated. The Generator checks for size < capacity and only then it puts a new
element into the circular buffer whereas the Receiver checks if size > 0 and only then
retrieves the next element. Unfortunately the BOOST circular buffer size implementation
is not interprocess safe. After lots of testing it became clear that nothing can be done to
change that fact. There are race conditions between the value of size, the elements within
and where the receiver or generator are accessing the circular buffer. After working fine
for a short period of time bad elements fall in and eventually become more until one gets
a failure rate of 100%. Even putting memory fences in all thinkable places — within some
tests the code contained almost more fences then other statements — did not help.

So far I can conclude that the BOOST circular buffer implementation can not be
used within an interprocess environment, period. The solution to this problem was
programming an interprocess functional circular buffer on my own, on top of the
BOOST: : Interprocess vector which is — as expected — interprocess tested. This leads us
to the next problem: alignment.

3.2. Problems with the alignment

The first definitions of buffer structs in structure.h were using alignment attribute state-
ments and looked similar to the listing 3.1.

N O Ut W N

0~ O T W

=
W N~ O ©

#define BUFFER_PACKET SZ (8 KiB_IEC)

// buffer packet t
typedef struct {

uint32 t flag; // header
pulse packet t pulse packet; // data
} __attribute_ ((aligned (BUFFER_PACKET SZ), packed)) buffer packet t;

Listing 3.1: buffer packet using alignment attribute

#define BUFFER PACKET SZ (8 KiB_IEC)

// expected size of wint32 t, see buffer packet t.flag
#define BUFFER PACKET HEADER 4

#define BUFFER_PACKET PADDING \
(BUFFER_PACKET S7Z — BUFFER_PACKET HEADER — PULSE PACKET SZ)

typedef struct {

uint32 _t flag; // header
pulse packet t pulse packet; // data
uint8 t padding [BUFFER PACKET PADDING];

} __attribute_ ((packed)) buffer packet t;

Listing 3.2: buffer packet using padding

But putting such aligned structs within a BOOST: :Interprocess vector — which is
the base of the self-made circular buffer — did not work. The BOOST allocator has its
own thoughts upon alignment and they are not compatible with using the alignment
attribute. The solution to this was to use padding instead. It was tried to avoid padding
as it produces less readable and reusable code, but it seems that one has to live with it.
The above code therefore became the following: listing 3.2.

3.3. About memory fences

As memory fences themselves are an enormous field apart from reading various papers
and scanning through some books the best way to avoid errors is defensive coding, of
course, and heavy testing. And this is what was done. After having a stable code
and thinking of the right places for fences some tests where started without fences in
expectance of errors... If then enabling the fences would remove these errors the fences
would probably have been well placed. Due to these expectations it was rather disturbing
that even a three weeks run lead to no errors. On the other hand this fail-free test is some
evidence that either the self-made circular buffer has just a that stable implementation
that no fences are needed or its just an effect of x86 architecture.. But well not every
possible settings were tested. Just in case, the fences were left commented out in the
correct places.

4. Performed Tests

During production of the HMF Transmitter various tests were performed. The results
of these tests were not kept as their intention was not measuring the performance but to
check the code for being bug free. The longest of these tests ran for three weeks and no
failures arose. So I may say that the code can be considered as being bug free in means
of typical usage. The last steps of this internship were the performance tests. On the
way producing them the code was cleaned up a bit (e.g. removing printf statements and
some older remarks) but nothing should have been changed that may introduce new bugs
or influences performance measurable. Well there was one greater change: extracting the
shamem-initialisation from the Generator to a newly introduced process — the Starter.
But as the shamem-initialisation already was encapsulated within the shamemInit.cpp
that was no big deal. Before going into further detail the test environment will be outlined
in the following section.

4.1. Environment

4.1.1. code branches

Three different test settings (different code) were executed:

001 INIT_TEST performance testing of the creation and initialization process of the
shamem!

002 ONE_PAIR performance testing of one Generator-Receiver pair

003 MULTI_PAIR performance testing of multiple Generator-Receiver pairs using differ-
ent shamems?

The resulting code of test 3 is the most modular and clean one and should be used in
further development. Of course — when one can run multiple pairs a multiplicand of one
is also possible; so the creation of test 3 code actually obsoleted the test 2 code. Because
test 3 produces a neater output the one-pair tests where run again using test 3. The
results of test 2 are therefore not discussed any further. The code of the INIT_TEST is
quite chaotic as most code was not supposed to execute. It is just a dirty branch of the
HMF Transmitter with no further purpose than performing the INIT_TEST.

!test code and non-processed results: tag/TEST 001 INIT
2test code and non-processed results: tag/TEST 003 _MULTI_PAIR

4.1.2. #define options

Throughout all tests three values as BUFFER_SIZE were used. For better recognition
they were arbitrarily named (after the power of some machines I worked on during this
internship). All buffer sizes are prime numbers as this guards us for missing certain errors
on a circular structure. For example, using a prime ring-size element x on run y is surely
distinct from element x, (y-1).2 Like this we are able to assert correct reception.

1. HACKOMAT 24989 (PRIME_2762)
2. FOXI 49999 (PRIME_5133)

3. DOPAMINE 74959 (PRIME_7393)

No other values where altered.

4.1.3. compile flags

The HMF Transmitter makefile has (within others) two different master targets: make
debug and make optimize. Additionally one can specify the so called EXENV which in
effect passes a define to the compiler telling structure.h which BUFFER_SIZE to take. The
following list shows 3 example make statements and their outcome:

make g++ -Wall -std=gnu++0x -DEXEC_HACKOMAT -c ...
make -e EXENV=FOXI debug g++ -Wall -std=gnu++Ox -DEXEC_FOXI -g -00 -c ...

make -e EXENV=DOPAMINE optimize g++ -Wall -std=gnu++Ox -DEXEC_DOPAMINE
-03 -c ...

-Wall produces warnings on bad code style, without -std=gnu++0x BOOST does not
work, -g enables debugging, but the difference between the tests is due to the specified
EXENV and the different optimisation levels. The debug tests were especially performed to
check if the optimisation might have spoiled the test by optimising away some test code.
If the -03 results had turned out faster in orders of magnitude the results would have
had to be double checked. Furthermore the receiver checks if all packages are received
correctly.* Therefore I can say that all parts of the code have executed.

4.2. Results and plots

4.2.1. Initialisation of the Shared-Memory Area

The first test that was performed was the INIT_TEST. Its aim was to receive information
on whether it is possible to start-up the HMF Transmitter on need and finally shut it

3each buffer packet is generated on base of the count of previous generated buffer packets; see
flagval/FLAG_MAX which must be distinct from BUFFER_SIZE.

4We know the expected package as the generator uses a predictable non-random generation of pulse
data.

10

down. As the initialisation takes a few tenths of a second and we expect the transporta-
tion of buffer packets in microseconds frequent initialisations should be avoided. It is
favourable to call the initialisation only once and then reuse the buffer on demand. Fur-
ther it was observed that in the ONE_PAIR test the first package (of 1,000 buffer packets)
was also one of the slowest packages (high above the mean and mostly equal to the slow-
est package measured). This is explainable by the fact that on Linux, malloc() requests
memory by calling sbrk() which expands the process’ address space, but the actual as-
signment of memory pages happens upon the first write to this memory. This kind of
lazy reservation of RAM should actually count to the initialisation time but it is not
measurable by the initialisation test itself. The first/last package time is not represented
in any plot but one can find these values in the appendix.

Furthermore it was checked if compiler optimisation would speed up the initialisation
process. But figure 4.1 shows clearly that there is no noteworthy difference between
compiling with debugging or optimising options. It could be observed that the average
time per buffer packet (blue and purple boxes) decreases slightly with an increased buffer
size. To make this visible to the observer, the y2 range (right side) was set to start at
3.5 us — all measured values lie within 4 and 4.3 us. So as long as the shamem is not to
be initialised very often and if an increased buffer size brings along a better bandwidth
there is nothing that indicates against increasing the buffer size.

All initialisation tests were performed 120,000 times and thereof the mean and standard
deviation (sd) was calculated.

4.2.2. One pair

The following two test settings (one pair and multiple pairs) both measured the time after
every 1,000 buffer packets being send (one test package). After 1,000,000 test packages
being send the test stopped. Mean time and standard deviation were calculated out of
the average of these measurements. Finally the bandwidth was calculated thereof.

Let us now take a look at the run of one pair comparing debug and optimise compiler
setting. As one can see in figure 4.2 compiling with optimise (-03) is measurable better.
But one must also see that there is a significant covering of the sd margins of both
tests. So one cannot expect much out of compiler optimisation considering the HMF
Transmitter code. This is probably due to the actually quite clear and simple loop which
is performed endless times and cannot be estimated and optimised by the compiler as he
cannot know anything about the volatile variables. For the generator the r-head position
is volatile as for the receiver it is vice versa. Also these results show clearly that all
code was performed as otherwise we would see an extreme increase in speed within the
optimised setting. In an earlier test there was a problem with the optimiser “optimising
away” the code® that should actually be tested.

5Cf. the famous Linux 2.6.30 0-day exploit:
http://lists.grok.org.uk/pipermail/full-disclosure/2009-July/069714.html

11

http://lists.grok.org.uk/pipermail/full-disclosure/2009-July/069714.html

Initialisation of shared memory (shamem)

0.35 T T — T T T
total init time
99% margin (3sd) ——+— v 1 48
debug (per buffer packet) 22 v
03 F optim (per buffer packet) Ts s
4 46
0.25 | v
{44 2
—_— v (0]
2, 02} s ta €
) £
£ {42 %
£ o015} 5
= ¢
v 14 g
0.1} e ®
4 3.8
0.05 |
4 3.6

Hdebug Hoptimise Fdebug Foptimise Ddebug Doptimise
buffer size and optimisation

Figure 4.1.: Initialisation of shared memory circular buffer. The green bars show the
total time the initialisation takes. The red error margin is 3sd wide so that
one can see something and the red triangles show the minima and maxima
measured. The blue and purple bars show the time per buffer packet.

12

time per 1000 buffer packets [ms] (lines)

Figure 4.2.:

Comparision of debug (-O0) and optimise (-O3)

0.98 T T T r T 10000
debug srrrree
optimise T
096 | . 7
: : x
:4 9500 38
' @
94 a
0.9 2
£}
4 9000 8
092 | * J
5 5
&
09} £
: {800 o
)
£
0.88 |
L L L L i 8000

30000 40000 50000 60000 70000
buffer size [# elements]

One pair: comparing debug and optimise compile flag. As in figure 4.1 the
blue and purple colours distinguish between the debug and optimise compile
settings. The boxes at the bottom show the calculated bandwidth whereas
the lines denote the mean time of the measured test packages (each 1,000
buffer packets). The error lines denote the 1sd margin.

13

Bandwidth in MiB depending on buffer size and pairs count

bandwidth [MiB/s]

pairs count

Figure 4.3.: Overview of the multiple pairs test scenario

4.2.3. Multiple pairs

The final and most interesting tests are the tests with multiple pairs. All these tests are
using the same colour scheme. The scheme can be studied best in figure 4.3 which gives
a quick and clean overview of the test results considering the total bandwidth. In the
figures 4.4 and 4.5 all lines refer to the mean time per test package whereas the boxes
denote the bandwidth and use the y2 axes (right side). All tests with 1, 2, 3, and 4 pairs
where performed using the three available buffer sizes Hackomat, Foxi, and Dopamine.
The 6 pairs test was performed using the Dopamine setting (biggest buffer size) only as
its aim was to show what happens when we overpower the available machine — which
had 8 CPUs whereas the 6 pairs test would actually need 12 (for each process having its
own CPU).

In figure 4.4 we can see that with each additional pair the total bandwidth increases
even though high costs are paid: The mean time transferring 1,000 buffer packets (one
test package) is increased heavily. Also we see that with 3 and more pairs the reliability
of a test package being written to the shared memory within a given time is lost. We
can see this especially well in figure 4.5.

Apart from 3 pairs we cannot see any significant influence of the buffer size used.
Taking a look at figure 4.5 we can see that the Foxi setting (buffer size 49999) gains some
advantage over the Dopamine setting.

14

Multi pair: buffer size comparision

4 . . . T r 12000
_. 35} 1 _
4 M [H 11000 §
= 8
£ 0 2
7N ¥ i I o)
) H 10000 =
S 25H =
s ©
> 5
£ S
3 2f 1 ks
= i o000 3
o . =
2 5
- H o
5 15 g
Q L] o
E 8000 2

= .l 0
2p -
Sp
: . ' : 7000 4p —

30000 40000 50000 60000 70000
buffer size [# elements]

Figure 4.4.: This plot shows one line for all pairs (1 to 4) and the time their test packages
needed in mean to be transmitted depending on the buffer size used. The 6
pairs result is not shown as it has only one buffer size setting. Furthermore its
mean package time lies far above the other results and would not contribute
to this plot’s readability.

Multi pair: pairs count comparision

T T T — T ": 12000
4 ' A

/ R 1

/ s i !
mn (&Y. i} a] ™
® 35t - \ P { 11000 §
= [1 2 i 1 o
= Ll 7 e g —
£ HREY \ 2 [@
E 3 i ‘ Al : i ‘ : é
© ¥ i L 4 10000 =
[} i i —
8 a5t o / P §

> iy i]
5 oA 1 :
2 2t / . L {9000 3
S i ! / N i i =
—) i 7 < i i Ts il a
g 15} I L T E]
[0} i ! i S i o
S i : ! : i : : i 8000 _F:

h 1k i !] i] i]

i] !] i] i]

i] !] i] i]

|] !] i] i]

0.5 . L 7000
0 1 2 3 4 5 6 7

pairs count

Figure 4.5.: This plot shows one line for every buffer size setting.

15

5. Conclusion

One might miss a chapter discussion, but as the test results were discussed along chapter
4.2 already this report ends just with a short summary and an outlook.

5.1. Summary

e The BOOST circular buffer is - considering our needs - not compatible with the
BOOST interprocess library (see chapter 3.1).

e The HMF Transmitter code should generally be compiled with -03. And a com-
parison with -00 should be executed to check for unexpected discrepancies.

e The buffer size should be a prime number as this guards for missing errors in test
phase (see chapter 4.1.2).

e Volatile variables are sufficient and combined with the structure of the HMF Trans-
mitter circular buffer they seem to render memory fences unnecessary (see chapter
2.1).

e The buffer size has no significant effect on bandwidth (see any plot).

If there is RAM shortage a smaller buffer size should work just as well.

e Multiple pairs do increase the bandwidth but bring along a loss considering the
reliability of the transportation time of a single packet (especially see figure 4.5).

More than 2 pairs will decrease mean time reliability significantly.

I consider the FOXI buffer size setting combined with 3 pairs to be the best trade-
off between bandwidth and mean time reliability (see figure 4.5). With this setting a
bandwidth of about 10 GB per second can be reached (11301591 KiB) and the mean
time per 1,000 buffer packets lies around 2.1991311ms with a standard deviation of
0.5903547ms. The bandwidth reached should suffice the Hybrid Multiscale Facility’s
needs [FACETS M7-5, 2009; Briiderle et al., 2011].

5.2. Outlook

As with any project there is still some work left. The next steps that should be considered
will be outlined here.

16

5.2.1. Buffer sizes

As we did not see great differences using the three defined buffer sizes these tests should be
run again using rather small buffer sizes. Also a buffer size sweep should be useful to find
which buffer size works best with a given number of pairs. To support a buffer size sweep
the code has to be restructured such that it is able to close down the shamem, cleaning
up all remains and then starting up again but with a different buffer size. Therefore the
actual structure with a buffer size define will not work. Well another possibility would be
to change the SuperStarter.sh such that it is able to run make and passing an arbitrary
value for the buffer size to the make command.

5.2.2. Buffer packet size

All tests were ran with a buffer packet size of 8 KiB to ensure proper page alignment. But
there were actually no tests ran evaluating the effect on total bandwidth when changing
this value. There were two reasons why a size of 8 KiB was used:

The page size of the machine where the tests were ran is 4 KiB and 8 KiB is expected
to be safe for modern machines. Run getconf PAGE_SIZE on console to receive your
machines page size.

Secondly the page size has to be fitted to the FPGAs needs such that it can hold a
full FPGA Ethernet jumbo frame, which — in our case — is specified as 7KiB [FACETS
M7-5,2009]. Therefore it was decided to use 8 KiB as this is the first multiple of the test
machines page size greater than that frame size. Note that the size of a pulse_packet_t,
being 7 KiB, was also chosen according to the FPGA Ethernet frame size.

5.2.3. Initialisation process

The initialisation process is not optimal. There is the problem with the lazy RAM reserva-
tion (see page 11) which cuts down the reliability of the initialisation tests as well as of the
first buffer packets filling the buffer within a given time. The initialisation of the buffer is
actually using buffer->assign(BUFFER_SIZE, createInvalidBufferPacket());. An-
other approach could be using buffer->reserve (BUFFER_SIZE) instead or in combina-
tion. Finally one could add to the initialisation the filling of the buffer once with dummy
values such that the reservation of the RAM is enforced. This could lead to a more
accurate value of the initialisation and to more reliability within the working loop. This
of cause will cut down overall performance but if it is decided to initialise the shamem
early the initialisation could take place prior to the time critical phase of the project —
thereby doing no harm.

5.2.4. Making a fully fledged C++ class

The whole circular buffer code could be packed into a fully fleged C++ class rendering the
interprocess circular buffer effortlessly reusable. A design could be creating a circular
buffer management class which has methods like initialiseShamem(), getWriter()

17

and getReader(). The get methods should return some type of circular buffer access
class.

5.2.5. RDMA

Be that as it may, the most important next step will be the adaption and testing of the
HMF Transmitter using actual RDMA-NICs. At first two computers sharing a common
“RDMA-shamem” should suffice.

Following this report there will be a bachelor thesis which will concentrate on using
RDMA-NICs.

5.3. Acknowledgments

This document would not look that good without the great latex usage hints and the
general revision by FEric Miiller. Further thanks go to Alex Bradbury who helped with
some English.

Last but not least I must thank my young daughter Zorea who motivated with her
smiles.

18

A. Appendix

A.1l. Delivered report package

Along with this report a git repository is delivered, which is structured as follows:

HMF Transmitter
| _code
tag ... codes used for evaluation and their corresponding results
tTEST_OOl_INIT
TEST_O03_MULTI_PAIR

BrUDRK . ot final state: HMF Transmitter Version 1

N T documentation (latex)
I o I A gnuplot/ .plt files, generating the plots
LAt e data files used for plotting

The full package can be found at https://brainscales-r.kip.uni-heidelberg.de/
projects/report-khusmann.

A.2. Classes and code organization

A.2.1. List of C++ Programming Language files

cActivityPrinter.cpp Shows that something is happening (used in debug mode only)
cMicroCounter.cpp Helps a bit in measuring microseconds

Generator.cpp Main Class: Generates data and puts them into the circular buffer in
shamem

Receiver.cpp Main Class: Receives data out of the circular buffer in shamem.
shameminit.cpp Constructs and initialises the shamem and the circular buffer therein.

Starter.cpp Main Class: calls method in shamemiInit.cpp to construct the shamem and
then starts a Generator-Receiver pair

structure.cpp Helps constructing and asserting diverse structures and structs; it is
BOOST independent!

19

https://brainscales-r.kip.uni-heidelberg.de/projects/report-khusmann
https://brainscales-r.kip.uni-heidelberg.de/projects/report-khusmann

A.2.2. List of h files

Most .h files are just what they are named after — header files (cActivityPrinter.h, cMi-
croCounter.h, shamemlInit.h). But there is more about these three:

exitDescriptions.h Contains some exit codes
shamemTypes.h Contains all BOOST specific shamem typedefs

structure.h Apart from being structure.cpp‘s header file this is the file which exerts most
control upon HMF Transmitter’s code

As structure.h with all its parameters and defines is so important the next appendix
section is dedicated to that file in particular.

A.3. structure.h: defines

The file structure.h lots of define statements, some are just aliases for clearer code, e.g.
#define MFENCE() __asm__ __volatile__ ("mfence;":::"memory") or constants to
remember universal values #define PRIME_1131. These should not be changed and
will not be documented any further. They are self declaring and of minor im-
portance only. But some defines are rather switches and changing them will have
great influence on the finally compiled code, e.g. #define USE_SCHED_YIELDS or
#define BUFFER_PACKET_SZ (8 KiB_IEC). The following list will give a short descrip-
tion on each of these elements.

Fist note will be the setting used in TEST_003.

e Changing active code blocks

USE_SCHED _YIELDS defined. Enables use of sched_yield() within any wait-
ing while loop, should be defined for proper functioning. Disabling it puts
CPU usage at 100 percent but with lower efficiency.

COPY _ACCESS undefined. If defined the receiver will copy the read buffer
packet using memcpy before comparing it to the expected. If not only a refer-
ence to the receivers active buffer packet is kept and its contents are compared.

COMPLETE COMPARE undefined. If defined the complete buffer packet is
compared upon arrival. Enabling this slows down the HMF Transmitter ex-
tremely because the complete packet has not only to be compared but the
comparator has to be generated as well. If not defined only the expected
flagval will be checked. Note that the recent code never failed regardless of
the settings of USE_SCHED_YIELDS, COPY_ACCESS and COMPLETE_COMPARE.

e Changing test measurements

FLAG _MAX 1,000. Every FLAG_MAX elements measurements are taken, decreas-
ing this number slows down overall performance while it probably increases
the measured performance (the time used for the calculation is subtracted

20

from the measured time, but the other process may use that time!). All Tests
in TEST_003 were performed with a value of 1000 this seems to be a reasonable
value leading to measurements taken about every millisecond.

TST_PACKAGE _CNT 1,000,000. Number of PACKAGES a FLAG_MAX buffer pack-
ets to be transmitted. Increasing this number will increase the reliability of
test results, the time a test takes and the RAM used for measurement (one
double per package). Therefore it should be high but in reasonable bounds.
One million leads to tests of about 16 minutes and gives a fair reliability of
the results.

e Changing RAM usage

BUFFER _SIZE distinct. Number of buffer packets within the circular buffer -
raising this number increases used RAM significantly. Should be set according
to available RAM and BUFFER_PACKET_SIZE. The buffer size is defined through
compile environments, code expects to be compiled with either of -D [EXEC_-
DOPAMINE | EXEC_FOXI|EXEC_HACKOMAT] and will set buffer size accordingly to
PRIME_7393, PRIME_5133, PRIME_2762.

BUFFER _PACKET _SZ 8KiB_IEC. Specifies the exact size of one buffer packet.
Padding/ MaxPulses will be calculated according to this value. When chang-
ing it be aware that BUFFER_PACKET_SZ * BUFFER_SIZE + peanuts equals
the RAM usage of one Generator-Receiver pair. A size of 8 KiB assures clean
page alignment and looks like the best value.

PULSE PACKET _SZ 7KiB_IEC. Specifies the amount of HICANN/ pulse
data per buffer packet. Value must be smaller then BUFFER_PACKET_SZ -
BUFFER_PACKET_HEADER. So at the moment there is 1 KiB free for the BUFFER_-
PACKET_HEADER. That gives room for the buffer_packet_t to be changed
since it uses only 4 of the 1024 spare bytes. And 7 KiB seem in respect of the
expected length of pulse packets (pulses_count) to be sufficient.

e Other stuff

BUFFER 10 HEAD SZ 1KiB_IEC. Size of struct buffer_head_t (position
and status of circular buffers g-head/r-head). Value should not be changed.

21

0~ O UL i W N

= e e e e
UL W N = O ©

A.4. Plot data files

Out of the following .dat files the plots are generated (using gnuplot). These files again
are derived out of the *.result files which can be found in the tags TEST 001 INIT and
TEST 003 MULTI_PAIR. The .dat files can be found in side-project plot.!

A.4.1. init_test.dat

GNUplot data file

HMF Transmitter TEST INIT
data derived from tag TEST 001 INIT/test 001.result

#

Initialisation of Shamem

#

measuring total

init time

in seconds,

col 8 is per element in usec

name nb BUF _SZ min avg max sd element
1 2 3 4 5 6 7 8

#

Hdebug 1 24989 0.10408 0.10651 0.11767 0.00077 4.2623
Hoptimise 2 24989 0.1037340 0.1061690 0.1242070 0.0007883 4.2486
Fdebug 3 49999 0.1992879 0.2033972 0.2456210 0.0022568 4.0680
Foptimise 4 49999 0.2009740 0.2051974 0.2179220 0.0016418 4.1040
Ddebug 5 74959 0.2960839 0.3003860 0.3140180 0.0020232 4.0073
Doptimise 6 74959 0.2924840 0.3006551 0.3202870 0.0024141 4.0109

IThe structure of the report bundle can be found in appendix A.1

22

/ f 1 f 1 / 1 / 1 f #
7.9°'700996L ¥8¥V'¢989¥798 T161G¢6°0 69LL02¢0°0 ¢c966¢cv'c TI619¢6°0 €0T6188°0 6567.L 9 estundoq
V0L €C6ETTL 9LETPELOGR €F9E0F6°0 S9G¥020°0 9¢E€06¥1°€ €¥VI9E0T6°0 LOE6968°0 6567.L g SnqepQ

/ / / f d f 1 / 1 f #
0C€'996L€GL <CG9'8I8YI98 ¥CE98C6°0 0¥.Lc020'0 L¥PE€0L09°€ TC€I98C6°0 0€00088°0 66667 ¥ oestmiidog
¢eclL08vLveEL OPI'0CTIL6ES 9L0L0S6°0 L98¢610°0 08016¢0°¢ 9L0L2S%6°0 96¢1€06°0 66667 € Snqapy

/ / / f 1 f 1 / 1 f #
GGy'0G€0LGL ¢C60°6C8TS98 00997¢6°0 <CIL68IO'0 88FV6ET9'E 0099¥¢6°0 TS6T1188°0 6867¢C ¢ oesmundoy
G67°0LG6S9V.L CCV'€0CGTcSE8 816E8€6°0 6L9€LT0°0 7GG806L°¢ 8I6E8E6°0 €€C0568°0 6867¢ 1 SnqepH

/ / / f 1 / / / / f #

/ 01 | 6/ s/ L 9/ ¢/ rl &/ ¢/ I #

/ asynd |/ 49ffnq | jquowaps |/ ps | 0w [bav | ww | 79 09 | qu |/ awU #

/ yrprmpunq /gy | oosouditw | sw / 12 | wowpdisosop #

6.0] 240fou0yy 1593 burunp pojrjrwsuvay s19yovd 4dffnq vyoy #

pounsvow, a49m sabvyond 9_Of #

sjuawaje g00°‘r fo suipjuoo abvyond pounsvow Y #
19y00d uaffnq ouo s1 JuUIWI]I Uy #

#

410d 09y /U ouo buisn s))nsaL 4291WSUDL] JNH fO uoswuvdwoy) #

pnsad ksund [x/YIvd LLTAN 00 LISAL 601 wosf paariap vjop #
HIVd HNO LSHAL 42111wsund], JNH #
a11f vyop 101dONDH #

jepaied auo ‘Zp'y

DO =AM IO O~ 0000 0 = N <f
L B B B B B B B e B BN o o e Il aN|

— AN M <0 © b~ 0

23

/ / / / / / / / / / / #
9 8086E£€0T ¥C69TIS8TIT 0667VCC ¥ CEE6LEG” 9L20¥70€ 79T 066¥7VEC' ¥ S9990G60°T 6567, €1 93doQ

¢

b

/ / / / / / / / / / / #
¥ IV0T¥V00T 9LVGLVIT L8CR9¥8'C 960T9¥78" G9L6688 LT L8C89¥8'C 69¢0G06°0 6567, ¢l ¥idoQ

14 8LGLLOOT TECTLISTI LI86SER'C T91C€98" 8G9TTLL VL LIS6SE]'C 99100680 66667 11 ¥rdog

¥ 606£966 GCELSETT 991¢998°¢C 680VT¥S8” 9G96TTL GL 99T1€998'Cc €¥¥6906°0 6867¢ 01 ¥idoyg

/ / / / / / / / / / / #
¢ 00£59656 8G09960T Y0C8VEC'¢C 89806¥79" 628669101 F¥0C8VEC'¢ 62906880 6S67L. 6 ¢rdo(q

€ 688886 T6ST0CTT TTET661°C L7GE06G” IV66L0T°0T TIET66T°C TTIS6TTI6°0 66667 8 ¢1dog

€ £€6LCGR86 ¥€€09¢CTT 88.990¢'¢ 9¢C968G” TGLIVER'V 88L.990¢'¢c ¥.L66016°0 6867¢ L ¢rdoy

/ / / / / / / / / / / #
4 07,9448 T€T6LL6 CLETIEI'T VeIC610° CYSIVIC ¥ CLETI9E9'T C€069.L8°0 6S967L 9 ¢rdoq

4 GELYVGS ¢IVG9L6 69€78€9°1 C88E8¢C0O” TT00961°¢ 69€¥8€9'T 9681¢CI6°0 66667 G zrdog

4 c0v6¥4S 9V L0OLLE G97GLEI'T 91200¥%0" CLCOVLE T G9¥GLEI'T €908606°0 6867¢C ¥ ¢rdoH

/ / / / / / / / / / / #
T G0099¢L 989798 TT6TS¢C6°0 69L..0¢20° ¢C966¢CTV'C TT6TGC6°0 €0T6T88°0 6467L € 13do(q

T 996.L€GL 6187198 ¥2€98C6°0 0¥.L2020° LYE€0L09°¢ ¥2€98¢6°0 0€00088°0 66667 € 13doyg

T 09€0LGL 6C8T498 00997260 CTL68TO" 8876¢19°¢ 00997¢6°0 TS6TI8KY0 6867¢ 1 13doyg

/ / / / / / / / / /— #
/ Ir | or | 6 / g / Lo/ 9 / ¢ | 7o slel| 1#
| saind | sind |/ 49ffnq | jquowaps |/ ps | Tow | bav | urws | Nmebm‘\@: [pwpu #
/ quo |/ yiprmpunq s/qyy | ooesoudiw [sut / 12 | diuosap #
6.0 240fou2yy 1593 buiunp pojrrwsuvay s39y0nd 4dffnq vyoy #

sutnd poziwiido

pounsvow o49m sabvyoond 9_gf #

sjuawaje O0°‘r fo suipiuoo 2bvyoDd pounsVIW Y #
19y00d uaffnq ouo s1 JUIWI]I Uy #

#

21drgnw buisn $3INsoL 42771 WSUDL], JNH fO uoswunduwioy) #

11nsou xoz1wr)do x/Yryd ILTAN §00 LSHIL 611 wosf paariop vivp #

YIVd ILTAN ISHAL 42111uwsuva] JNH #
a11f vyvp 101dOND #

1epued nnw gpy

DO AN M FLIO O~ 4T ANM IO OI~-00O AN <t L0
oA A A A A A A A A AN A AN AN ANANNNANMmMmoMm N oM™

— AN M <0 © b~ 0

24

A.5. Acronyms
Vision(s)

HMF

HICANN
HMFConvHw

NP

C++

RDMA-NIC

RDMA

FPGA

BOOST

BOOST: : Interprocess
shamem

r-head

g-head

sd

KiB

Electronic Vision(s) Group

Hybrid Multiscale Facility

High Input Count Analog Neural Network
HMF Conventional Hardware
neuromorphic part

C++ Programming Language

RDMA capable network interface card
Remote Direct Memory Access

Field Programmable Gate Array
BOOST C++ Libraries

BOOST interprocess library
Shared-Memory Area

Receiver Read-head

Generator Write-head

standard deviation

kibibyte: in this document a KiB is defined as 2'° = 1024 bytes

25

Bibliography

Boost.CircularBuffer, Version 1.46.1 website, http://wuw.boost.org/doc/libs/1_46_
1/libs/circular_buffer/doc/circular_buffer.html, 2011.

Boost.Interprocess, Version 1.46.1 website, http://www.boost.org/doc/libs/1_46_1/
doc/html/interprocess.html, 2011.

BrainScaleS, Research, http://brainscales.kip.uni-heidelberg.de/public/index.
html, 2011.

Briiderle, D., et al., A comprehensive workflow for general-purpose neural modeling with
highly configurable neuromorphic hardware systems, Biological Cybernetics, 104, 263—
296, 2011.

Ehrlich, M., K. Wendt, L. Ziihl, R. Schiiffny, D. Briiderle, E. Miiller, and B. Voggin-
ger, A software framework for mapping neural networks to a wafer-scale neuromorphic
hardware system, in Proceedings of the Artificial Neural Networks and Intelligent In-
formation Processing Conference (ANNIIP) 2010, pp. 43-52, 2010.

FACETS MT7-5, Verify that the layer-2 communication reaches the bandwidth require-
ments for a multi-wafer system, including the host communication via GBit-Ethernet,
FACETS Milestone M7-5, UHEI and TUD, 2009.

Millner, S., A. Griibl, K. Meier, J. Schemmel, and M.-O. Schwartz, A VLSI implemen-
tation of the adaptive exponential integrate-and-fire neuron model, in Advances in
Neural Information Processing Systems 23, edited by J. Lafferty et al., pp. 1642-1650,
2010.

OpenFabrics, Website, http://www.openfabrics.org/index.php?option=com_
content&view=article&id=3, 2011.

Wendt, K., M. Ehrlich, and R. Schiiffny, GMPath - a path language for navigation,
information query and modification of data graphs, in Proceedings of the Artificial
Neural Networks and Intelligent Information Processing Conference (ANNIIP) 2010,
pp. 31-42, 2010.

26

http://www.boost.org/doc/libs/1_46_1/libs/circular_buffer/doc/circular_buffer.html
http://www.boost.org/doc/libs/1_46_1/libs/circular_buffer/doc/circular_buffer.html
http://www.boost.org/doc/libs/1_46_1/doc/html/interprocess.html
http://www.boost.org/doc/libs/1_46_1/doc/html/interprocess.html
http://brainscales.kip.uni-heidelberg.de/public/index.html
http://brainscales.kip.uni-heidelberg.de/public/index.html
http://www.openfabrics.org/index.php?option=com_content&view=article&id=3
http://www.openfabrics.org/index.php?option=com_content&view=article&id=3

	Introduction
	Motivation
	Assignment
	The simulator

	General Design
	Self-made circular buffer

	Encountered problems and curious observations
	Problems with BOOST circular buffer
	Problems with the alignment
	About memory fences

	Performed Tests
	Environment
	code branches
	#define options
	compile flags

	Results and plots
	Initialisation of the Shared-Memory Area
	One pair
	Multiple pairs

	Conclusion
	Summary
	Outlook
	Buffer sizes
	Buffer packet size
	Initialisation process
	Making a fully fledged C++ class
	RDMA

	Acknowledgments

	Appendix
	Delivered report package
	Classes and code organization
	List of C++ Programming Language files
	List of h files

	structure.h: defines
	Plot data files
	init_test.dat
	one_pair.dat
	multi_pair.dat

	Acronyms

	Bibliography

