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Spiking neural networks need a synaptic weight memory to function, thus it is
crucial that this memory is reliable and fault free. In this work, we investigate
the fidelity of the synaptic memory on the neuromorphic BrainScaleS-2 plat-
form. After implementation in software, the performance of different tests
at finding faults is evaluated on the synaptic memory of the BrainScaleS-2
platform. Afterwards the impact of SRAM timing configurations on fault
occurrence is tested, and finally a calibration created that configures the
timings into a fault-free state.
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1 Introduction

A BrainScaleS-2 (BSS-2) platform chip is made up of 2 x 256 neurons that are inter-
connected by 256 x 256 synapses each (Pehle et al., 2022). Synapses are defined via
a 6-bit weight and address which are used during the execution of Spiking neural net-
works (SNNs) on the platform. These weights are stored in an onboard memory in the
form of a Static Random Access Memory (SRAM). To ensure correct execution of SNNs
the weights must be correctly written and read back. The goal of this internship was to
create a software library for verification of the synapse memory, investigate the impact
of SRAM configuration and fix occurring faults by calibrating the available parameters.

2 SRAM Theory

2.1 SRAM Basics and Faults

A SRAM memory cell is made up of two interlocked CMOS inverters that form a bi-
stable circuit, fit for storing binary data. Each of the inverters is accessed via an NMOS
transistor, connecting each to a (respectively inverted) bitline. These access transistors
are activated via a wordline, which allows addressing specific cells in a SRAM.

Figure 1: Schematic of the standard SRAM cell. BL is bitline and WL wordline, bars
indicate logical inversion. Taken from Hock (2014).

SRAM operation consists of two basic operations:

— Write: To write a value into a cell, the bitlines are driven at the desired logical
values, and the wordlines are activated afterwards. This forces the logical values
onto the cell and writes the bit. The bitlines are only able to overpower the
logical “1” with a “0” if the pull-up transistor of the cell is weaker than the access
transistor.



— Read: To read a cell, the bitlines are charged to the supply voltage of the SRAM.
After the activation of the wordlines, the logical “0” side of the cell discharges
the connected bitline. Then a sense-amplifier detects the difference between the
bitlines and outputs the read value. This works only without changing the internal
state, if the pull-down of the cell is stronger than the access transistor.

From this we see there are mainly four areas where faults can occur according to Bosio
et al. (2012):

1. Cell: If the cell itself is faulty, after a given time, the internal state of the cell could
change, leading to a Data Retention Fault (DRF) of the written value.

2. Address Decoder: For the operation, the memory has to select the correct cells via
the wordlines, thus the address decoder could lead to faults if either the wrong,
multiple, or no cells are selected under a given address leading to faulty read /writes
at undesired locations or bad read/write operations if no cell is selected.

3. Write: If the write operations are faulty cells could be stuck at a certain value
(Stuck-At Fault) or fail transition form high to low or low to high (Transition
Fault). In addition, the write/read of other cells could influence the state of the
faulty cell, leading to a coupled fault behavior (Coupled Fault)

4. Read: A faulty read operation could either read incorrect values for a correct cell
state (Read Fault) or change the internal state of the cell invalidating subsequent
reads of the cell ([deceptive] destructive Read Fault)

Both Write and Read faults can be caused by different components such as the pre-
charge circuits, write drivers and sense amplifiers. This leads to a rich spectrum of fault
behavior which often is dynamic in nature and may only produce fails as a consequence
of process variations.

2.2 SRAM Timing

For read /write operations, 3 different timings on the synapse memory can be adjusted (Hock,
2014)

1. Precharge Config (pconf/pcconf): The precharge time before a read access ensures
fully charged and equalized bitlines before the wordlines are activated to ensure
correct sensing of the logical values. This timing is generated by a replica bitline
that gets charged by a configurable amount of up to 4 minimum width transistors
to simulate the charging dynamics of the bitline. The end of precharge is then
determined by an inverter connected to the replica bitline.

2. Wordline Config (wconf): The wordline activation timing controls the duration the
access transistors are activated during an operation. It must be long enough such
that a read operation causes a sufficient voltage difference to be sensed consistently
but not change the state of the cell. For a write operation it must be long enough



to switch the state of the cell. This timing is also generated by a replica bitline
which in this case is discharged by a configurable amount of up to 8 transistors, to
simulate the dynamics of the bitlines from the bitline to the cell. The end of the
wordline activation is then sensed by an inverter.

3. Digital Timing Config (wait_ctr_clear): The digital timing sets the amount of
cycles the digital logic waits after an analog read /write operation has been initiated
on the SRAM. This must be long enough such that the read/write operations have
completed, before the digital logic proceeds with the next steps. Especially for
read operations this ensures that the sense amplifier has reached a well-defined
state before the digital logic proceeds to access the value.
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Figure 2: Schematics of the circuits responsible for generating the timings. The config-
uration of the timings is applied at config, to the circuit. Taken from Hock
(2014).
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Figure 3: Timing diagram of a read and write operation

The individual transistors can be activated using bitflags contained in 4-bit (pconf) or
8-bit (wconf) integers, respectively. Therefore, there are multiple configurations that,
in theory, produce the same timing, giving the possibility for calibration to account for



variance in the components of the SRAM. The wait_ctr_clear setting is set as an
3-bit integer (0-7) indicating the amount of cycles to wait.

3 SRAM test patterns

To detect SRAM faults, tests are used which test for a range of different fault behaviors.
The basic concept is almost always to write a certain pattern and/or sequence of values
into the memory and then read them back to check if the values read from the memory
match with those written. Depending on the pattern and sequence of values different
types of faults of varying complexity can be found or identified (some tests can detect
a fault but not identify its type). In general, the more complex a fault behavior is, the
more complex the test for it has to be (Bosio et al., 2012). The tests I picked for this
internship are:

— Zero-One: The memory is written with all “0” and all “1”. This tests the basic
functionality of the cells, so it can detect stuck cells, transition faults and some
address decoder faults.

— Checkerboard: A alternating pattern of values/bits is written to the Memory. This
maximizes any sort of “drainage” between neighboring cells.

— Hammer Method: Instead of writing/reading a value just once it is written/read
multiple times in succession. This can uncover dynamic faults which may only
appear after multiple operations (e.g., charges building up). This method is appli-
cable to any pattern.

— Value Sweep: This Test considers all possible values for a Synapse written across
the memory simultaneously. This test checks the basic functionality of each synapse
to store all required values and can detect coupled faults within a synapse, but
does not consider crosstalk of cells belonging to different synapses.

— Galpat/Walking-1: For this Test a single high bit is “walked” through the memory
while leaving/setting the rest 0. Ideally the write operations only change 2-bits at
each step, to detect for faults occurring in different cells as response to the single
bit. This test checks for basic crosstalk between cells or in my case synapses.
Usually the test is also repeated with an inverted pattern of a “walking 0”.

— Pseudorandom Patterns: Instead of considering specific patterns a sequence of
Pseudorandom memory matrices are checked. The Test is Pseudorandom to make
the test repeatable. This Method can test for any fault, but is in most cases less
efficient at detecting specific faults. Also, this test only can ensure no faults up to
a probability dependent on the amount of matrices tested and the complexity of
the faults. Nonetheless, is this approach useful as one does not have to take into
account/know the type of faults that may occur making it more robust for general
validation and is still fit for finding faults given enough time.



Importantly I left out the class of “marching tests”, which consist of sequences of oper-
ations applied to the memory cells in specific order (e.g., writing 1 on all cells in rising
address order). These are in most cases more efficient in terms of the amount of op-
erations performed but are very inefficient to implement in python as opposed to the
strongly optimized array operations available in python. Considering the relatively small
size of the SRAM I choose to ignore marching tests.

3.1 Implementation of SRAM tests

The SRAM operations are executed by a FPGA in form of a pre-built Playback-Program
composed of basic hardware operations and program control i.e. read/write or barriers.
Necessarily “read” operations supply tickets to retrieve the data after execution of the
program on the hardware. Specify parts of the hardware are addressed using Coordinate
objects and their corresponding data handled as Container objects available as classes in
python. For my SRAM tests the synapse memory is addressed using the SynapseMatriz
containers which stores a matrix of values of the entire synapse memory. Considering
these implementations a SRAM test is composed of the following steps:

1. Iterate a series of matrices to be written and add write and read operations to the
program according to the used test method

2. Store the expected values and tickets for the read operations

3. Execute the program on the chip and wait until the hardware has finish reading
the memory

4. Retrieve the values read by the hardware and compare them with the expected
values store previously

My final implementation introduces the following abstract interfaces for testing:

— RamTest: This object defines a sequence of memory matrices dynamically depen-
dent on the shape of the memory to be tested. Optional details of the test (e.g.,
length, values to consider) are supplied at creation.

— TestMethod: This object defines the operations to be executed for each memory
matrix given as an Iterator.

— RamTest: This object represents one test and provides methods for building and
evaluating the tests and stores the data for evaluation. The hardware is addressed
using general interfaces for writing and reading matrices to/from memory as well
as a method to retrieve the read values given the tickets. Furthermore, the shape
of the memory is specified as a property which is passed to the used TestPattern
at build. To build a test the build method takes a TestPattern and TestMethod
and writes the Program into a PlaybackProgramBuilder.
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Figure 4: UML diagram of the Implementation. The Actions enum categorizes the pos-
sible operations RamTest supports. Example implementations such as Syn-
ramTest are shown.




For the synapse memory the RamTest interface is implemented using the hardware API
described above, and the shape set as a hardware property. The specific memory to be
tested (i.e, the hemisphere and weight or label memory) is specified at creation.

The patterns specified in section 3 are implemented using the TestPattern interface. The
Hammer method as well as a basic “Write and Read once” method are implemented using
the TestMethod interface.

3.2 Preliminary tests on BSS-2

With the first iteration of my code I ran tests on some few setups to test my implemen-
tation and make some first observations about the synapse memory. The tests were only
run a few times, so these observations don’t account for any statistics or dynamic faults.
The main takeaways from these preliminary tests are:

— Faults are present but sparse relative to the size of the synapse memory and only
appear on few setups. At this point on 3 out of 10 tested hemispheres I found
faults on 2 of 5 tested setups and when faults were present they appeared in low
numbers (< 10).

— Faults often to occur on only one hemisphere of a chip, so the causes seem to be
localized within a hemisphere.

— Faults always occurred in the same column, and within that column most of the
time on the same bit for all faulty values. So faults seem to stem from some
problem that depends/interact on the bitline.

— Some faults are of dynamic/stochastic nature, as they do not appear in all test
runs of the same method and pattern.

This for now comprises no relevant analysis of the faults but will be useful for further
investigation of the tests.

3.3 Comparison of tests on BSS-2

For further proceedings I compared the performance of test on a faulty setup to learn
about the nature of the faults and the capability of the test to detect those faults. The
tests/methods considered are those specified above and run each 10 times. To evaluate
the tests I choose the setup on Wafer 70 and FPGA 0 where I had already found faults
in Column 110 while running the preliminary tests, including dynamic faults. The total
amount of faults occurring in a synapse are added for each test and normalized by the
amount of matrices each pattern read.
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Figure 5: Faults found in Column 110 on one a faulty setup



As shown in fig. 5 the basic functionality of all cells is given by ZeroOne, but there are
specific values (e.g., 42) which cause faults in synapses, so there seems to be coupled
fault behavior for bits in a synapse. The faults found in the Checkerboard test are a
coincidence for the value 42, because ValueSweep as Hammer finds more faults which
must occur at different values. Furthermore, the Column GalPat test shows that there
seems to be no significant crosstalk between synapses, as the fault occurred when the
synapse that was set high itself. From the Hammer Method we can conclude that some
faults are dynamic as they don’t happen each run of the pattern. The Column GalPat
pattern shows in this instance also that it seems to be irrelevant if the faulty synapse
is accessed during multiple write/read beforehand or only at the faulty read/write, but
could also just be a statistical coincidence as the fault was not found every run. Whether
the difference between the Hammer and the normal execution of ValueSweep is due to
the hammering or if it’s just statistics of testing more matrices for the dynamic faults
is not clear so far. Finally, the PseudoRandom test performs the best at finding faults
with 1000 matrices per run compared to ValueSweep Hammer with 1280 matrices per
run.

To determine whether the Hammer method results in more faults found I ran the Val-
ueSweep test with different amounts of hammer 30 times and considered the amount of
faults they found on average per run. To compare the different amount of writes/reads.
The amount of faults is normalized by the amount of reads per matrix. In total the
performed reads differ but if it’s a fixed probability the normalization should account
for this fact and equalize the average amount
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Figure 6: Average amount of faults found by the ValueSweep pattern using different
amounts of read/write (hammer) on Column 110 on the same setup as in fig. 5

From fig. 6 it’s clear that the amount of hammer makes no significant difference in the
amount of faults that are found, in other words it’s equivalent to hammer the values or
run them multiple times separately. The standard deviation decreases with rising amount
of hammer because the total amount of reads increases and the variance between reads
of one hammer sequence is not considered. Thus, for further investigations the Hammer
Method is not considered unless to improve statistics.

4 SRAM Timings

4.1 Impact of SRAM Timing on Faults

In the next step I investigated how the timings pcconf and wconf influence the amount
of faults occurring on the synapse memory. To do this I did a full parameter sweep
of pcconf and wconf combined and counted the total amount of faults occurring on
the entire array for each setting. As the parameter space is quite large I chose to use
the ValueSweep test pattern as it is the most effective regrading runtime. As seen
in the previous section this pattern does not always find all faults, but for now the
presence (or more importantly their total absence) of any fault is more important and
so far faults that were not detected by this pattern came along with faults that always
were detected. The parameters were both swept from 1 to their max value, excluding
0 because it does not represent a working hardware configuration but would instead
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generate infinite long timings. To visualize the results I choose to sort them after the
amount of transistors activated by each configuration as this reflects the state of the
hardware the best. Furthermore, I set the equal for the west and east hemispheres as
the tests always address both of them and for now it doesn’t make a difference if they
are distinguished or not, because faults appear on only one hemisphere usually:
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Figure 7: Result of the sweep for W70F3 northern hemispheres of one setup. The Col-
ormap is linear up to 10 faults and logarithmic for the rest of the range and
is normalized with respect to the maximal amount of faults 256 x 256 x 64.
The red dot indicates the standard configuration at the time of recording the
sweeps.
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Figure 8: Result of the sweep for W70F3 southern hemisphere. Same settings as in fig. 7

The example in fig. 7 shows the best behavior we can expect from a hemisphere, all
configs are good for one and two wconf transistor, all other configurations with more
than 2 wconf transistors are “broken” regardless of the memory. The plot in fig. 8 shows
a typical behavior for a hemisphere with faults, some wconf transistors alone are faulty,
and many configurations are faulty for two wconf transistors. The observations made
from these sweeps in general are:

— The timing configurations and the transistors used have a very strong impact on
the faults occurring For this reason different hemispheres of the same chip can
show very different fault behavior, because their timing is generated by different
circuits/transistors.
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— Using more than 3 wconf transistors for timing always produces faults, we can
conclude that this setting is too fast in general. This restricts the useful parameter
space we have to consider later.

— Increasing the pcconf speed most of the time also causes more faults, especially
when faults are present for 2 wconf transistors.

— In the combined parameter space of 1 and 2 wconf transistors there always seem
to be a fault free setting so far. For 2 wconf transistors this is not clear yet for all
setups and must be verified further using other tests.

— There are cases where 1 wconf transistor alone causes faults but in combination
with other is fault free. Conversely, there are pairs of transistors that alone don’t
produce faults but do when they are activated together, although this only hap-
pened on chips that have many faulty setting.

— In the case of single faulty transistors increasing the amount of pcconf transistors
sometimes fixes the faults

— wconf has a greater impact on faults, as can be seen by the “stripes” in the plots
along varying wconf

The most important result for the synapse memory is that there seems to be always a
fault free configuration of the timings, therefore it’s viable to introduce a calibration for
the synapse memory. As I did not distinguish east and west in this sweep and still found
fault free areas, they can be treated as one configuration regarding faults.

4.2 Impact of timing configuration on execution time

One question is if the timing configuration impacts the execution time of programs on the
synapse memory. To test this I ran a set of 100 Pseudorandom matrices write and read
on the synapse memory for different settings. I did one sweep for all configurations with 1
wconf transistor and one sweep with one representative for each equivalent configuration
(i.e., testing 1 to 7 wconf transistors and 1 to 4 pcconf transistors). For the latte
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In figs. 9 and 10 it is shown that the analog timing configuration does not have a
significant influence on the execution time. There are some unexpected deviations of
single measurements, but these are not related to the timing configuration. This behavior
is expected as the time of an operation on the digital side is not coupled to the analog
operations but is dependent on the amount of cycles the operation takes which is set
separately by the wait_ctr_clear configuration. With this knowledge, we now can say
that the entire parameter space for 1 and 2 wconf transistors and 1 pcconf transistor is
viable in most cases.

5 Calibration of the SRAM Timings

With all the investigation from before I can now consider the calibration of the ana-
log timing settings to attain a fault free state of the synapse memory. The previous
measurements have shown no systematic in the position of the faulty configurations in
configuration space, therefore I perform a grid search of the viable configurations (as
discussed in section 4.1).

The tests and algorithm used for the grid search have to full-fill two goals:

— Find Faults Efficiently: The Algorithm must exclude faulty configurations as quick
as possible, therefore it makes sense to first perform tests with short runtime and
quit testing the configuration early if these already find a fault. Furthermore, long
tests should be split up if possible such that the algorithm can check regularly if
faults occurred instead of running the entire test. Lastly the amount of tests used
should be a small as possible, so tests that serve a similar purpose should not be
included both.

— Guarantee a Fault Free Configuration: The algorithm should cover all tests needed
to confirm the absence of faults with large confidence. This especially has to cover
dynamic faults that don’t occur every time the same test is run.

Taking into account these two points and the results from section 3.2 I choose the Val-
ueSweep and Pseudorandom Matrices for this task. The ValueSweep pattern is employed
to find strong faults quickly such that the algorithm can skip over such “obviously” faulty
settings. The Pseudorandom Matrices are then used to validate the fault free state of
the setting, here I choose to run sets of 10 x 500 distinct random Matrices to ensure
good statistics for dynamic faults and allow for evaluation of the tests in between the
sets. Finally, the algorithm reports the first fault-free configuration found. These tests
are performed on the entire synapse memory (weights and labels) to ensure function of
all memory cells.

As discussed in section 4.1 the configuration for east and west will be set equal for the
calibration, because the hardware has fault free configurations without this distinction,
thus reducing the parameter space dimension and making the calibration more efficient.
For the calibration I set wait_ctr_clear to its maximum value to exclude any interfer-
ence by the digital logic.
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5.1 Result of the Calibration

The calibration was run on 10 setups of which 6 setups had faults on 7 different hemi-
spheres. The calibration was able to find a fault free configuration for all of these setups,
of which all except the southern hemisphere W70F0 where within the area of 2 wconf
transistors and 1 pcconf transistors. It takes approximately 1.5 minutes to verify a fault
free config and depending on the state of the chip on average 3—6 minutes to find a fault
free config for a faulty hemisphere. The theoretical worst case for the used parameter
space would be 216 minutes if the faults would occur only at the last step of the verifica-
tion. The algorithm finds faults usually much earlier thanks to the multiple test steps,
especially for very faulty setups, so even if it would have to check all configurations it
would perform much better than the worst case.

6 Digital Timing

In addition to the analogue timing configurations for the synapse memory there is also
the digital wait_ctr_clear configuration which sets how many clock cycles the digital
logic waits before ending a read/write operation. If the setting is chosen to short it may
cause the digital logic to abrupt reads to early before the sense amplifier could establish
a well-defined value. On the other hand there is also the question of how this setting
impacts memory access time.

6.1 Time impact of wait_ctr_clear

To investigate how wait_ctr_clear impacts time performance of the synapse memory, I
recorded the execution time of writing and reading 100 random matrices for the possible
setting of wait_ctr_clear (1-7), excluding 0 because it is not a valid configuration. I
ran this test on Wafer 63 FPGA 0 for 50 times and took the average:

18
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Figure 11: Execution time for different wait_ctr_clear on

As one can see in fig. 11 there is at most a weak correlation between wait_ctr_clear
and execution time, therefore this factor will no longer be considered. On the other
setups I ran this test once, where i also only saw deviations from the mean unrelated to
the setting.

6.2 Impact of wait_ctr_clear on read faults

The more important question is which settings of wait_ctr_clear can be chosen without
producing faults. To do this wait_ctr_clear is swept similarly as before but this time
the amount of faults occurring for 1000 Pseudorandom Matrices are recorded. As the
parameter space is quite small for this sweep I was able to use a more accurate test but
which performs worse on runtime. For these tests the results from the calibration were
used to only consider faults dependent on wait_ctr_clear.
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Figure 12: Amount of faults depending on wait_ctr_clear setting on W72F2

The sweeps fig. 12 show that wait_ctr_clear can be chosen too low resulting in faults
starting from 1 or 2 clock cycle or less depending on the chip. It is therefore safe to
choose 3 or more for a working hardware, thus I choose 4 clock cycles for just to have a
“margin of error” to the lowest of 3.

We know now that we can ignore wait_ctr_clear during calibration and leave it at 4
for normal operation.

7 Hardware Database

The hardware configurations of the setups are handled by the Hardware Database, which
stores the configurations as a YAML file accessed using the yaml-cpp library for C++.
The data structures for the configurations are defined as C++ data structures in a header
file which get serialized and deserialized by the yaml-cpp library as fields the YAML. The
behavior for de-/serialization is described in a C++ file. For handling by the SLURM
service the C++ objects must be transformed into pure-C objects defined in a separate
header file. This conversion is also described in a C++ file.

For the results of my calibration script I added two 2D-arrays for wconf and pcconf
which accounts for the north/south bearing of the configuration on the first axis and the
east/west bearing on the second axis. As mentioned in section 4.1 the east/west bearing
is not distinguished during Calibration, hence the values are set equal for both bearings.
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-

hxcube_id: 13

fpgas:
- fpga: O
ip: 192.168.00.0
fuse_dna: 0123456789ABCDEF

synram_timing_pcconf:
- [1, 1]
- [1, 1]
synram_timing_wconf:
- [3, 3]
- [144, 144]
- fpga: 3

Figure 13: Example for the implemented YAML fields

8 Discussion

8.1 Summary

The goal of this internship was to investigate the fidelity of the synapse memory SRAM
on the BSS-2 platform. As the first step a test library for the SRAM memory was
developed in Python and multiple test methods and patterns implemented. After the
implementation of the synapse memory into the library I ran a number of different tests
on the Hardware. These tests showed that there are faults present on some setups.
Further examination gave insights about the nature of the faults and which tests are fit
to find them (see section 3.2). Using the insights from the previous tests I then inspected
how the timing configuration wconf and pcconf impact the faults. To do so I did a sweep
over the parameter space and recorded the amount of faults for each setting. This showed
that the timing configurations have a very strong impact on the faults and that there
is a reduced parameter space which always contained a fault free configuration. Further
investigations also showed that these configurations do not impact the executions time of
operations on the SRAM. Following these results I developed a calibration algorithm for
the timing configuration using the knowledge gained from the previous tests. Before the
calibration 4 hemispheres on 3 out of 10 setups showed faults in memory tests using the
standard configuration at the time. With the presented calibration, I was able to reduce
this number to zero: Thus for every tested setup a working configuration was found.
Afterwards I studied the impact of the digital timing configuration wait_ctr_clear on
execution time and faults. I concluded that the impact on execution time is negligible,
and the setting is fault free above 3 and more cycles. As a final step I created the fields
necessary for application of the calibration in the hardware configuration database for
the setups.
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8.2 OQOutlook

Concluding this internship there are still open questions/problems regarding the setups
and configuration as well as possible improvements that go beyond the internship:

— Implementation of March tests: The approach I've taken using Matrices for the
entire memory was only possible to the relative small size of the SRAM. For
larger memories it would be necessary to implement march tests like mentioned
in section 3. This implementation must be done in C++ due to the inefficiency of
Python.

— Identification of the fault origin: In this internship I did not identify the fundamen-
tal reason for the faults, but just did an analysis of the general behavior and test
performance, to calibrate the SRAM. For future hardware iterations it would be
useful and interesting to investigate origin of the faults by employing more precise
(and time intensive) tests and direct measurements.

— There are other memory arrays on the chips, which have not been tested (e.g.,
memory for capacitors). Using my library these could be implemented, tested and
calibrations employed in a similar fashion if necessary.

— The configurations in the hardware database are currently not being applied au-
tomatically. To do so one would have to modify the C++ library responsible for
loading the hardware configurations and add the timing configuration.

— On fundamental problem I discovered with the wconf setting was, that its usable
range is limited below 2 wconf transistors. For future chip iterations this could be
fixed by e.g., increasing the length of the transistors used.
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9 Appendix

Software Versions

Name

Version/Git Hash

code-format
halco

haldls

fisch

rant

ztl

pywrap
lib-boost-patches
libnux

hate

logger
hxcomm
sctrltp
visions-slurm
flange

lib-ref
bss-hw-params
hwdb
bss2-devops
calix

bitfile
container

09f32985a61264359b10a6a129dd6dce7e55¢9e8
34cbdc02f6ae82¢31309a1116815f6f006ab149a
5c3cced68fdael0f0849733fe2435afff613ed65
6120fc0ac0d90b3c66a212b3cchec25034bf584e
722edd57¢9e42462a660db8alfebb0211ffad07c
b6745261d8bfdced4516d58d632¢3¢73834839d2
5e2af30e€9593882b471d3cd02df00b93f13F479
136¢5b41cb046afe2¢726aa4646928bf5190622¢
fc3b137384596eabadbd5d4eelddfc9761a2aabe
0471609e365195012d66aa7178ae393d48999d96
73dadb3ced413c521845ef7d36£818073eeedfefa
95abf25670bd8cb7cch5b499cdeb6£653130cf20c
1d854f953{7e8c8ead44406a22bb80421cal3857c
8f41eadf5bd1573d8f4623e¢9ed698229£30036a3
28e729d59d13b41I380184351¢40d4da3086bed8
21fbcb0a7¢30efed98278e€997754128092b9736
b7be7827b5153680410bda76f8badbe693df23a8
£7262189b0e55b686896a3dea952065¢2f1a3789
65a9f028b9580a975c¢b09805b0f2b27H 17921960
a706868c6ba285b1f8fd7cdef1a19d7328¢02912
157

stable/2024-04-17_1

Table 1: Software Versions used during the internship

Glossary

SRAM Static Random Access Memory

SNN Spiking neural network

BSS-2 BrainScaleS-2
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